

Catholic Junior College

JC2 Preliminary Examinations
Higher 2

PHYSICS

9749/01
Paper 1: Multiple Choice
18 September 2020
1 hour
Additional Materials: Multiple Choice Answer Sheet

READ THESE INSTRUCTIONS FIRST

Write your name and tutorial group on this cover page.
Write and/or shade your name, NRIC / FIN number and HT group on the Answer Sheet (OMR sheet), unless this has been done for you.
Write in soft pencil.
Do not use staples, paper clips, highlighters, glue or correction fluid.
Answer all $\mathbf{3 0}$ questions in this paper.
For each question there are four possible answers, A, B, C and D. Choose the one you consider correct and record your choice in soft pencil on the separate Answer Sheet (OMR sheet).

Read the instructions on the Answer Sheet carefully.
Each correct answer will be awarded one mark. A mark will not be deducted for a wrong answer.
Any rough working should be done in this booklet.
The use of an approved scientific calculator is permitted, where appropriate.

Physics Data:

speed of light in free space
permeability of free space
permittivity of free space
elementary charge
the Planck constant
unified atomic mass constant
rest mass of electron
rest mass of proton
molar gas constant
the Avogadro constant the Boltzmann constant gravitational constant acceleration of free fall
$c=3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
$\mu_{0}=4 \pi \times 10^{-7} \mathrm{H} \mathrm{m}^{-1}$
$\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{~F} \mathrm{~m}^{-1}$
$\approx(1 /(36 \pi)) \times 10^{-9} \mathrm{~F} \mathrm{~m}^{-1}$
$e=1.60 \times 10^{-19} \mathrm{C}$
$h=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
$u=1.66 \times 10^{-27} \mathrm{~kg}$
$m_{e}=9.11 \times 10^{-31} \mathrm{~kg}$
$m_{P}=1.67 \times 10^{-27} \mathrm{~kg}$
$R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
$N_{A}=6.02 \times 10^{23} \mathrm{~mol}^{-1}$
$k=1.38 \times 10^{-23} \mathrm{~mol}^{-1}$
$G=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$
$g=9.81 \mathrm{~m} \mathrm{~s}^{-2}$

Physics Formulae:

uniformly accelerated motion
work done on / by a gas
hydrostatic pressure
gravitational potential
temperature
pressure of an ideal gas
mean translational kinetic energy of an ideal gas
molecule
displacement of particle in s.h.m.
velocity of particle in s.h.m.
electric current
resistors in series
resistors in parallel
electric potential
alternating current / voltage
magnetic flux density due to a long straight wire
magnetic flux density due to a flat circular coil
magnetic flux density due to a long solenoid
radioactive decay
decay constant

1 Which of the following is not a reasonable estimate?
A The power of an electric iron is 1 kW .
B The weight of a man on the moon is 100 N .
C The momentum of a tennis ball served by a professional tennis player is 4 Ns .
D The kinetic energy of a double-decker bus moving at a constant speed on an expressway is 50 kJ .

2 Four students A, B, C and D measured the potential difference across an electric component. Each student obtained five sets of data for the potential difference.

If the actual potential difference is $1.65 \times 10^{-2} \mathrm{~V}$, which student's measurement was accurate but not precise?

potential difference / $10^{-2} \mathrm{~V}$						
A	1.61	1.65	1.65	1.58	1.61	1.62
B	1.66	1.68	1.63	1.64	1.65	1.65
C	1.65	1.64	1.65	1.65	1.66	1.65
D	1.69	1.70	1.69	1.70	1.69	1.69

3 A boat moves at velocity of $4 \mathrm{~m} \mathrm{~s}^{-1}$ due south in still water across a lake. It then experiences a current flowing towards the west. The velocity of the boat changes to $7 \mathrm{~m} \mathrm{~s}^{-1}$.

What is the change in the velocity of the boat due to the current?
A $3 \mathrm{~m} \mathrm{~s}^{-1}$ due west
B $3 \mathrm{~m} \mathrm{~s}^{-1}$ due west of south
C $\quad 6 \mathrm{~m} \mathrm{~s}^{-1}$ due west
D $6 \mathrm{~m} \mathrm{~s}^{-1}$ due west of south

4 Two cars are initially side-by-side and at rest. They then accelerate in the same direction along the same straight line at different uniform rates. After 4.0 s , one of the cars is 12 m ahead of the other.

If they continue to accelerate at the same rate, how far apart will they be 6.0 s after they started?
A 15 m
B 18 m
C $\quad 22 \mathrm{~m}$
D 27 m

5 A tennis ball of mass 0.060 kg is moving normally towards a racket with an initial velocity of $5.0 \mathrm{~m} \mathrm{~s}^{-1}$ and rebounds in the opposite direction.

The force of the racket exerted on the tennis ball varies with time as shown.

What is the final velocity of the ball when it leaves the racket?
A $45 \mathrm{~m} \mathrm{~s}^{-1}$
B $50 \mathrm{~m} \mathrm{~s}^{-1}$
C $\quad 55 \mathrm{~m} \mathrm{~s}^{-1}$
D $95 \mathrm{~m} \mathrm{~s}^{-1}$

6 A tower is pulled by a bundle of steel cables anchored to the ground, as shown by the simplified sketch below.

The tower is acted upon by three forces. Which diagram shows the position and direction of each of the forces when the tower is in equilibrium?
A

B

C

D

7 A diving board of length 5.0 m is hinged at one end and supported 2.0 m from this end by a spring of spring constant $10 \mathrm{kN} \mathrm{m}^{-1}$. A child of mass 40 kg stands at the far end of the board.

What is the compression of the spring caused by the child standing on the end of the board?
A 1.0 cm
B $\quad 1.6 \mathrm{~cm}$
C $\quad 9.8 \mathrm{~cm}$
D 16 cm

8 The diagram shows the velocity-time graph of a 500 kg elevator during its upward motion.

What is the maximum power generated by the engine of the elevator?
A 7810 W
B 9310 W
C 9810 W
D 10300 W

9 Two identical objects, P and Q, are placed on a flat rough circular disc. Q is at a further distance from the centre of the disc compared to P.

The disc starts spinning from rest about its central axis with increasing speed. At a certain speed, one of the objects starts to slide off the disc.
Q slides off the disc first because
A the friction experienced by P and Q are always equal.
B it moves with a larger angular velocity compared to P.
C it requires greater friction to keep it in its position compared to P.
D the friction experienced by P is larger than Q before one of the objects slide off the disc.

10 P and Q are two points above Earth's surface at distances r and $2 r$ respectively from the centre of the Earth.

The gravitational potential at P is $-800 \mathrm{~kJ} \mathrm{~kg}^{-1}$. What is the gain in gravitational potential energy of a 2 kg mass when it is moved from P to Q ?
A $\quad-400 \mathrm{~kJ}$
B -200 kJ
C 400 kJ
D 800 kJ

11 Planet X has a density of ρ and radius of R. The gravitational acceleration at its surface is a. What is the gravitational acceleration at the surface of Planet Y which has a density of 2ρ and radius of $2 R$?
A 0.5 a
B a
C $2 a$
D $4 a$

12 A particle of mass $5.0 \times 10^{-3} \mathrm{~kg}$ performing simple harmonic motion of amplitude 150 mm takes 47 s to make 50 oscillations.

What is the maximum kinetic energy of the particle?
A $2.0 \times 10^{-3} \mathrm{~J}$
B $2.5 \times 10^{-3} \mathrm{~J}$
C $3.9 \times 10^{-3} \mathrm{~J}$
D $5.0 \times 10^{-3} \mathrm{~J}$

13 Which of the following statements is true for a stationary sound wave?
A The pressure at a displacement node is always very high.
B The pressure at a displacement antinode is always very high.
C The pressure at a displacement node fluctuates between high to low.
D A stationary wave can be formed by two waves with the same amplitude and frequency, travelling at the same direction towards a point.

14 In the figure below, graph \mathbf{C} shows how the pressure of a fixed mass of an ideal gas varies with its volume at a constant temperature.

If a similar ideal gas with double the mass is used and the experiment is conducted at the original constant temperature, which curve (A, B, C or D) gives the variation of the gas pressure with its volume?

15 An ideal gas undergoes a cyclic process in three stages:
(1) Expansion at constant pressure,
(2) Decrease in pressure at constant volume,
(3) Compression at constant temperature.

Which of the following must be true?
A There is net heat released by the gas during the cycle.
B The net work done on the gas during the cycle is positive.
C The net work done by the gas during the cycle is equal to the net heat transferred to the gas.

D The change in internal energy of the gas is equal to the work done during the constant pressure stage minus the work done during the constant temperature stage.

16 A beam of plane-polarised light of intensity I falls normally onto a thin sheet of polaroid.
If the transmitted beam has an intensity of $\frac{3}{4} I$, what is the angle between the plane of polarisation of the incident beam and the polarising axis of the polaroid?
A 30°
B 41°
C 45°
D 60°

17 A hemispherical bowl of radius 200 mm is completely filled with water at rest. If its side is tapped gently, a circular water wave pulse can be produced on the surface of the water which travels inwards with a speed of $250 \mathrm{~mm} \mathrm{~s}^{-1}$.

What is the radius of the pulse and its direction of travel one second after the pulse is produced?

A zero, stationary
B $\quad 50 \mathrm{~mm}$, inwards
C $\quad 50 \mathrm{~mm}$, outwards
D 100 mm , outwards

18 A stationary wave is formed on a stretched string of length L between two points as shown below.

Particles Q and R on the string are separated by distance s. The total energy of Q and of R are E_{Q} and E_{R} respectively.

Which of the following gives the correct phase difference between Q and R , and the relationship between E_{Q} and E_{R} ?

	phase difference / rad	total energy
\mathbf{A}	$\frac{2 \mathrm{~s}}{\mathrm{~L}} \pi$	$E_{Q}=E_{R}$
\mathbf{B}	$\frac{2 \mathrm{~s}}{\mathrm{~L}} \pi$	$E_{Q}<E_{R}$
\mathbf{C}	π	$E_{Q}=E_{R}$
\mathbf{D}	π	$E_{Q}<E_{R}$

19 Light of wavelength λ is incident normally on a diffraction grating of slit spacing five times the wavelength of the light.

What is the angle of diffraction of the second order maximum?
A 12°
B 24°
C 37°
D 45°

20 The figure below shows two horizontal parallel metal plates. The upper plate is maintained at a higher potential relative to the lower plate.

Line $X Y$ is inclined at an angle θ to the metal plates.
Which of the following graphs best shows the variation of electric potential V with distance r from X along the line $X Y$?
A

B

C

D

21 Two charges are fixed at a distance of 1.0 mm apart as shown below.
A uniform electric field with field strength $4.0 \mathrm{~N} \mathrm{C}^{-1}$ is applied in the direction from left to right.

Which statement describes the net force and torque experienced by the pair of charges?
A No net force and no torque.
B No net force and the torque is $8.0 \times 10^{-12} \mathrm{~N} \mathrm{~m}$ in the clockwise direction.
C A net force of $3.6 \times 10^{-14} \mathrm{~N}$ acts and the torque is $4.0 \times 10^{-12} \mathrm{~N} \mathrm{~m}$ in the clockwise direction.
D A net force of $3.6 \times 10^{-14} \mathrm{~N}$ acts and the torque is $8.0 \times 10^{-12} \mathrm{~N} \mathrm{~m}$ in the clockwise direction.

22 A battery causes a current of 3 A to flow through a metal wire of diameter 2.0 mm . The number density of the free electrons in the metal wire is $8.5 \times 10^{28} \mathrm{~m}^{-3}$.

What is the average speed of the electrons drifting along the wire?
A $2.0 \times 10^{-11} \mathrm{~m} \mathrm{~s}^{-1}$
B $2.0 \times 10^{-5} \mathrm{~m} \mathrm{~s}^{-1}$
C $7.0 \times 10^{-11} \mathrm{~m} \mathrm{~s}^{-1}$
D $7.0 \times 10^{-5} \mathrm{~m} \mathrm{~s}^{-1}$

23 A heater of resistance 5.0Ω dissipates 125 W of power when current flows through it. The amount of energy converted to heat when 0.4 C of charge passes through it is
A 2 J
B 10 J
C 50 J
D 625 J

24 A flat circular coil M is mounted co-axially inside another flat circular coil N. N has three times the radius of M .

The two coils are connected in series to the same power supply. At the centre of the two coils, the magnetic field created by M is opposite in direction to the magnetic field created by N .

What is the ratio of the number of turns of coil M to the number of turns of coil N to create zero magnetic flux density at the centre?
A 1:3
B $2: 3$
C 3:1
D 3:2

25 In a velocity selection, positively charged particles $+q$ enter an electric field of strength E and a magnetic field of flux density B that are applied perpendicularly to each other in the same region. Particles which are travelling at speed v are undeflected by the cross-fields.

Which of the following is necessarily true?
A To select particles of charge $-q$ with speed v, there is a need to reverse the direction of either E or B.

B To select charged particles with speed $2 v$, with the magnitude of B unchanged, the magnitude of E needs to be doubled.

C For particles of charge $-q$, there is a need to reverse the directions of both E and B in order to select the particles with speed v.

D If the magnitude of charge doubles, the magnitudes of the electric field strength and magnetic flux density cannot remain as E and B to select the particles with speed v.

26 A copper disc spins freely between the poles of an electromagnet at a constant speed. P and Q are two metallic brushes making contact with the axle and the edge of the disc as shown in the diagram. A resistor R is connected across P and Q .

Which of the following statements is correct?
A A current flows from P through R to Q, and P is at a higher potential then Q.
B A current flows from Q through R to P, and Q is at a higher potential then P.
C A current flows from P to Q in the disc, and P is at a higher potential then Q.
D A current flows from Q to P in the disc, and Q is at a higher potential then P.

27 A sinusoidal alternating current I / A varies with time t / s according to the equation

$$
I=2.0 \sin (100 \pi t)
$$

This current is allowed to pass through a resistor of resistance 5.0Ω.
Which of the following shows how the power $P /$ W dissipated in the resistor varies with t / s ?
A

B

C

D

28 The primary coil of an ideal transformer has 1000 turns and is connected to a sinusoidal a.c. supply. The secondary coil has 40 turns and is connected to an ideal diode and a load.

If the root-mean-square (r.m.s) voltage across the load is 6.5 V and the mean power dissipated in the load is 12 W , what is the r.m.s current in the primary coil?
A $\quad 0.026 \mathrm{~A}$
B $\quad 0.074 \mathrm{~A}$
C $\quad 0.10 \mathrm{~A}$
D $\quad 0.15 \mathrm{~A}$

29 The x-ray spectrum of a metal target is shown in the figure below.

Which of the following statements is correct?
A The smallest wavelength detected, $36 \times 10^{-11} \mathrm{~m}$, is dependent on the target material.
B The graph shows that electrons with a range of kinetic energies are used to bombard the target.

C The locations of the peaks can be used to identify the element that the target material is made of.

D The position of the peaks allow us to calculate the energy of the electrons used to bombard the target.

30 A photon of wavelength 555.00 nm , measured to an accuracy of 0.01 nm .
What is the minimum uncertainty in the location of the photon?
A $6.6 \times 10^{-23} \mathrm{~m}$
B $1.0 \times 10^{-11} \mathrm{~m}$
C $3.1 \times 10^{-2} \mathrm{~m}$
D $3.0 \times 10^{-1} \mathrm{~m}$

Catholic Junior College JC2 Preliminary Examinations
Higher 2

CANDIDATE NAME \square

CLASS

```
2T
```


PHYSICS

9749/02

Paper 2: Structured Questions

Candidates answer on the Question Paper.
No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your name and class on all the work you hand in.
Write in dark blue or black pen in the space provided. [PiLot frixion erasable pens are not allowed] You may use a soft pencil for any diagrams, graphs or rough working.
Do not use staples, paper clips, highlighters, glue or correction fluid.
The use of an approved scientific calculator is expected, where appropriate.
Answer all questions.

FOR EXAMINER'S USE		DIFFICULTY		
		L1	L2	L3
Q1	19			
Q2	18			
Q3	111			
Q4	110			
Q5	112			
Q6	19			
Q7	121			
PAPER 2	180			

This document consists of 19 printed pages and one blank page.

Physics Data:

speed of light in free space	$c=3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$	
permeability of free space	$\mu_{0}=4 \pi \times 10^{-7} \mathrm{H} \mathrm{m}^{-1}$	
permittivity of free space	$\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{~F} \mathrm{~m}^{-1}$	
		$\approx(1 /(36 \pi)) \times 10^{-9} \mathrm{~F} \mathrm{~m}^{-1}$
elementary charge	$h=1.60 \times 10^{-19} \mathrm{C}$	
the Planck constant	u	$=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
unified atomic mass constant	$m_{e}=9.66 \times 11 \times 10^{-27} \mathrm{~kg}$	
rest mass of electron	$m_{p}=1.67 \times 10^{-31} \mathrm{~kg}$	
rest mass of proton	R	$=8.31 \mathrm{JK}^{-27} \mathrm{~kg}^{-1}$
molar gas constant	$N_{A}=6.02 \times 10^{03} \mathrm{~mol}^{-1}$	
the Avogadro constant	G	$=1.38 \times 10^{-23} \mathrm{~mol}^{-1}$
the Boltzmann constant	G	$=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$
gravitational constant		
acceleration of free fall		

Physics Formulae:

uniformly accelerated motion
work done on / by a gas
hydrostatic pressure
gravitational potential
temperature
pressure of an ideal gas
mean translational kinetic energy of an ideal gas molecule
displacement of particle in s.h.m.
velocity of particle in s.h.m.
electric current
resistors in series
decay constant

$$
\begin{aligned}
& s=u t+1 / 2 a t^{2} \\
& v^{2}=u^{2}+2 a s \\
& W=p \Delta V \\
& P=\rho g h \\
& \phi=-\frac{G m}{r} \\
& T / K=T /{ }^{\circ} \mathrm{C}+273.15 \\
& p=\frac{1}{3} \frac{N m}{V}\left\langle c^{2}\right\rangle \\
& E=\frac{3}{2} k T \\
& x=x_{0} \sin \omega t \\
& v=v_{0} \cos \omega t \\
& = \pm \omega \sqrt{x_{0}{ }^{2}-x^{2}} \\
& I=A n v q \\
& R=R_{1}+R_{2}+\ldots \\
& 1 / R=1 / R_{l}+1 / R_{2}+\ldots \\
& V=\frac{Q}{4 \pi \varepsilon_{o} r} \\
& x=x_{0} \sin \omega t \\
& B=\frac{\mu_{0} I}{2 \pi d} \\
& B=\frac{\mu_{o} N I}{2 r} \\
& B=\mu_{o} n I \\
& x=x_{0} \exp (-\lambda t) \\
& \lambda=\frac{\ln 2}{t_{\frac{1}{2}}}
\end{aligned}
$$

Answer all the questions in the spaces provided.
1 (a) A ball is kicked from horizontal ground towards a vertical wall, as shown in Fig. 1.1.

Fig. 1.1 (not to scale)
The horizontal distance between the initial position of the ball and the base of the wall is 24 m . The ball is kicked with an initial velocity v at an angle of 28° above the horizontal. The ball hits the wall after a time of 1.50 s . Air resistance is negligible.
(i) Calculate the initial horizontal component $v \times$ of the velocity of the ball.

$$
v_{x}=.
$$

\qquad $\mathrm{m} \mathrm{s}^{-1}$
(ii) Show that the initial vertical component v_{y} of the velocity of the ball is $8.5 \mathrm{~m} \mathrm{~s}^{-1}$.
(iii) Calculate the time taken for the ball to reach its maximum height above the ground.
(iv) The ball is kicked at time $t=0$. Assume that the vertical component v_{y} of the velocity of the ball is positive in the upwards direction. On Fig. 1.2, sketch the variation with time t of v_{y} for the time until the ball hits the wall. Label this graph \mathbf{Q}.

Fig. 1.2
(v) Use your graph in Fig. 1.2 to estimate the height of the wall.
height of wall =
(b) On Fig. 1.2, sketch a possible v_{Y} against t graph if air resistance acts on the ball. Assume the ball does not reach the ground before 1.50 s . Label this graph \mathbf{R}.

2 (a) Explain the origin of upthrust acting on a body in a fluid.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) In order to lift a submerged load of 600 kg from a seabed, a lifting bag made of an elastic material of negligible mass is filled with air and attached to the load, as shown in Fig. 2.1. The density of seawater is $1050 \mathrm{~kg} \mathrm{~m}^{-3}$ and the lifting bag contains $0.700 \mathrm{~m}^{3}$ of air of density $1.27 \mathrm{~kg} \mathrm{~m}^{-3}$ such that the load ascends with a constant speed.

The volume of the load is negligible compared to the volume of the lifting bag.

Fig. 2.1 (not to scale)
(i) Calculate the upthrust on the lifting bag when its volume is $0.700 \mathrm{~m}^{3}$.
upthrust =
(ii) Calculate the total drag force on the bag and load.
(iii) Explain why in practice, to maintain a constant speed of ascent, air has to be released continuously from the lifting bag. Temperature change during the ascent is negligible.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

3 (a) State the principle of superposition.
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Interference effects are produced on a viewing screen as a result of interference of the direct waves from a 500 nm electromagnetic wave source S and reflected waves from the mirror as shown in Fig. 3.1.

Fig. 3.1 (not to scale)
Points P and Q are at minimum intensity and there is only one point between P and Q which is at a maximum intensity.
S is placed 100 m to the left of the screen and 1.0 cm above the mirror.
(i) Explain why P is at a minimum intensity.
\qquad
\qquad
\qquad
(ii) Calculate the distance y. Explain your working.

$$
y=
$$

(iii) Describe and explain the changes observed at point P, if any, as a result of the following changes made independently to the experiment.

1. Source S is gradually shifted vertically further away from the mirror.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
2. The mirror is replaced by a black cardboard.
\qquad
\qquad
\qquad
\qquad

4 (a) (i) State what is meant by the internal energy of a system.
\qquad
\qquad
\qquad
(ii) Explain why, for an ideal gas, the change in internal energy is directly proportional to the change in thermodynamic temperature of the gas.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(iii) A box, filled with an ideal gas, is rapidly accelerated horizontally from rest.

Fig. 4.1
Suggest, with a reason, how the internal energy of the gas would vary from the back wall to the front wall of the box during the acceleration.
\qquad
\qquad
\qquad
\qquad
\qquad
(b) A cylinder of volume $1.8 \times 10^{4} \mathrm{~cm}^{3}$ contains helium gas at pressure $6.4 \times 10^{6} \mathrm{~Pa}$ and temperature $25^{\circ} \mathrm{C}$. The root-mean-square speed of the helium gas atoms is $336 \mathrm{~m} \mathrm{~s}^{-1}$. Helium gas may be considered to be an ideal monatomic gas.
(i) Calculate the number of helium atoms in the cylinder.
number =
(ii) Calculate the density of helium atoms in the cylinder.

> density =
$\mathrm{kg} \mathrm{m}^{-3}$
[2]

5 (a) Twin core cable, consisting of a 'live' wire and a 'neutral' wire, is commonly used for wiring applications. Current is supplied via the 'live' wire from an electrical power source to the appliance. Current then flows via the 'neutral' wire back to the electrical power source.

The twin core cable shown in Fig. 5.1 consists of two thin wires whose centres are 5.0 mm apart. Each wire carries a current of 0.25 A .

Permeability of the insulating material, $\mu=1.3 \times 10^{-6} \mathrm{H} \mathrm{m}^{-1}$.

Fig. 5.1
(i) State whether the force between the wires is attractive or repulsive.
\qquad
(ii) Calculate the magnitude of the force per unit length on each wire.
(b) A railgun is a device typically designed as a weapon that uses electromagnetic force to launch high speed projectiles. A simplified model of a railgun is shown in Fig. 5.2. Fig. 5.2 shows the top view of a pair of smooth horizontal metal rails connected across a 2.0 V battery of negligible internal resistance. The metal rails have negligible resistance. A copper rod XY of resistance $3.04 \mathrm{~m} \Omega$ is resting on the rails. The rails and the rod lie in a horizontal plane and a uniform vertical magnetic field of flux density 24 mT is applied out of the page.

When the switch is closed, a magnetic force acts on XY which causes it to start moving towards the right. At time $t \mathrm{~s}$ after the switch is closed, XY has a velocity $v \mathrm{~m} \mathrm{~s}^{-1}$.

Fig. 5.2
(i) As the rod moves to the right, there is an induced e.m.f across rod XY. Use Lenz's law to explain why the induced electric potential at X is lower compared to Y .
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Show that the current, in amperes, in the closed circuit at time t is given by (660-3.2v).
(iii) Show that after some time rod XY will slide with constant velocity. Determine this velocity. Explain your working.

6 A photocell is connected in a series circuit with a variable d.c. power supply and a sensitive ammeter as shown in Fig. 6.1.

The photocell is illuminated with electromagnetic radiation of wavelength 264 nm and power 3.8 mW and photoelectrons are emitted. The potential difference V between the collector C and emitter E in the photocell is adjusted and the photocurrent I is measured. Fig. 6.2 below shows the graph of I against V.

Fig. 6.1

Fig. 6.2
(a) Explain why the photocurrent does not continue to increase for positive values of V.
\qquad
\qquad
\qquad
\qquad
(b) (i) Determine the energy of a photon of the incident electromagnetic radiation.
(ii) Calculate the rate at which the photons are incident on the emitter.
rate of photon incidence $=$ \qquad
(iii) Show that the maximum rate of photoelectron emission is $5.0 \times 10^{10} \mathrm{~s}^{-1}$.
(iv) Suggest a reason for the difference between (b)(ii) and your answer in (b)(iii).
\qquad
\qquad
\qquad
\qquad
(c) (i) Calculate the work function energy of the emitter.
work function energy = J
(ii) The emitter is replaced with another emitter of half the work function energy. On Fig. 6.2, sketch a graph to show the new variation with V of I.

7 A solar cell is a device which converts light energy directly into electrical energy. Under the influence of light, a terminal potential difference (p.d.) is generated across the solar cell. This process is explained as follows.

A solar cell consists of three main layers: an N-type material layer, a Junction layer, and a P-type material layer.

There is an electric field across the Junction layer as shown in Fig. 7.1. When photons are incident on the solar cell, electron-hole pairs are generated in the Junction layer. Holes are positively charged carriers with charge $+e$. The electrons and holes move in opposite directions under the influence of the electric field, which sets up a terminal p.d. across the solar cell.

Fig. 7.1
Electron-hole pairs will be generated in the solar cell provided that the incident photon has an energy greater than a certain value known as the band gap energy of the material used.

The magnitude of the p.d. developed across the terminals of the solar cell depends on the intensity of light incident onto the solar cell.

The variation of the potential difference V across the cell with current I can be investigated using the circuit shown in Fig. 7.2.

Fig. 7.2

R is a variable resistor with a maximum resistance of 7.0Ω. The voltmeter has infinite resistance and the resistance of the ammeter is negligible.

Fig. 7.3 shows the variation of I with V for a particular cell of surface area $4.0 \times 10^{-4} \mathrm{~m}^{2}$ when illuminated normally with light intensity $1100 \mathrm{~W} \mathrm{~m}^{-2}$.

Fig. 7.3
(a) (i) State why a p.d. is set up across the solar cell only for a limited range of frequencies of photons.
\qquad
\qquad
\qquad
(ii) Explain why the p.d. across the solar cell increases with the intensity of the incident light.
\qquad
\qquad
\qquad
\qquad
\qquad
(b) (i) Explain how the graph shows that the e.m.f. of the solar cell is 550 mV .
\qquad
\qquad
\qquad
\qquad
(ii) Explain why the experiment data needed to be extrapolated to obtain the trend from P to the point when $\mathrm{V}=550 \mathrm{mV}$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) (i) From Fig. 7.3, determine the power dissipation in the load resistor for point P.
(iii) From Fig. 7.3, estimate the maximum power dissipation in the load resistor. Show your working.
maximum power $=$ W
(iv) On Fig. 7.4, sketch the graph of power output P_{o} of the cell against V. Label and include a suitable scale on the vertical axis.

Fig. 7.4
[2]
(d) Calculate the maximum efficiency of conversion of light energy into electrical energy.
(e) A number of solar cells are connected to a load resistor L as shown in Fig. 7.5.

Fig. 7.5
The resistance of L has been adjusted so that each cell gives the maximum power estimated in (c)(iii).

Calculate
(i) the potential difference across L ,
potential difference $=$
(ii) the current through L.
current =
\qquad
(f) Suppose each cell is operating at maximum power estimated in (c)(iii). Draw a suitable network of cells so that the cells may be used to provide an output power of approximately 5 kW at 30 V .
-- BLANK PAGE --

Catholic Junior College

JC2 Preliminary Examinations

Higher 2

CANDIDATE NAME

\square
CLASS
2T
2T

PHYSICS

9749/03
Paper 3: Longer Structured Questions

Candidates answer on the Question Paper.
No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your name and class on all the work you hand in.
Write in dark blue or black pen in the space provided. [PILOT FRIXION ERASABLE PENS ARE NOT ALLOWED]
You may use a soft pencil for any diagrams, graphs or rough working.
Do not use staples, paper clips, highlighters, glue or correction fluid.
Section A: Answer all questions.
Section B: Answer one question only. Circle the question number attempted in Section B.
You are advised to spend one and a half hours on Section A and half an hour on Section B.

FOR EXAMINER'S USE		DIFFICULTY		
		L1	L2	L3
SECTION A				
Q1	18			
Q2	17			
Q3	$/ 10$			
Q4	$/ 11$			
Q5	$/ 12$			
Q6	15			
Q7	17			
SECTION B				
Q8	120			
Q9	120			
PAPER 3	180			
PAPER 2	180			
PAPER 1	130			
TOTAL FOR THEORY	$/ 190$			

This document consists of $\mathbf{2 5}$ printed pages and one blank page.

Physics Data:

speed of light in free space	$c=3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$	
permeability of free space	$\mu_{0}=4 \pi \times 10^{-7} \mathrm{H} \mathrm{m}^{-1}$	
permittivity of free space	$\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{~F} \mathrm{~m}^{-1}$	
		$\approx(1 /(36 \pi)) \times 10^{-9} \mathrm{~F} \mathrm{~m}^{-1}$
elementary charge	$e=1.60 \times 10^{-19} \mathrm{C}$	
the Planck constant	$h=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$	
unified atomic mass constant	u	$=1.66 \times 10^{-27} \mathrm{~kg}$
rest mass of electron	$m_{e}=9.11 \times 10^{-31} \mathrm{~kg}$	
rest mass of proton	$m_{P}=1.67 \times 10^{-27} \mathrm{~kg}$	
molar gas constant	R	$=8.31 \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
the Avogadro constant	$N_{A}=6.02 \times 10^{03} \mathrm{~mol}^{-1}$	
the Boltzmann constant	G	$=1.38 \times 10^{-23} \mathrm{~mol}^{-1}$
gravitational constant	g	$=9.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$
acceleration of free fall		

Physics Formulae:

uniformly accelerated motion
work done on / by a gas
hydrostatic pressure
gravitational potential
Temperature
pressure of an ideal gas
mean translational kinetic energy of an ideal gas molecule
displacement of particle in s.h.m.
velocity of particle in s.h.m.

$$
\begin{aligned}
& s=u t+1 / 2 a t^{2} \\
& v^{2}=u^{2}+2 a s \\
& W=p \Delta V \\
& P=\rho g h \\
& \phi=-\frac{G m}{r} \\
& T / K=T /{ }^{\circ} C+273.15 \\
& p=\frac{1}{3} \frac{N m}{V}\left\langle c^{2}\right\rangle \\
& E=\frac{3}{2} k T \\
& x=x_{0} \sin \omega t \\
& v=v_{0} \cos \omega t \\
&= \pm \omega \sqrt{x_{0}{ }^{2}-x^{2}} \\
& I=A n v q \\
& R=R_{I}+R_{2}+\ldots \\
& 1 / R=1 / R_{l}+1 / R_{2}+\ldots \\
& V=\frac{Q}{4 \pi \varepsilon_{o} r} \\
& x=x_{0} \sin \omega t \\
& B=\frac{\mu_{o} I}{2 \pi d} \\
& B=\frac{\mu_{o} N I}{2 r} \\
& B=\mu_{o} n I \\
& x=x_{0} \exp (-\lambda t) \\
& \lambda=\frac{\ln 2}{t_{1}} \\
& \frac{1}{2}
\end{aligned}
$$

electric current
resistors in series
resistors in parallel
electric potential
alternating current / voltage
magnetic flux density due to a long straight wire
magnetic flux density due to a flat circular coil
magnetic flux density due to a long solenoid
radioactive decay
decay constant

3

Section A

Answer all the questions in the spaces provided.

1 Fig. 1.1 shows block A of mass 1.5 kg held against a spring with a force F. The spring is compressed by 2.0 cm .

Fig. 1.1
The force F is then removed and the block A accelerates to the right before losing contact with the spring with a speed of $0.50 \mathrm{~m} \mathrm{~s}^{-1}$ as shown in Fig. 1.2. Block A collides elastically head-on with block B. The mass of block B is 0.50 kg .

Fig. 1.2
Air resistance and frictional forces are negligible.
(a) Determine the speed of block B after the collision with block A.
(b) Fig 1.3 shows the variation with time of the force acting on block A during the collision with block B.

Fig. 1.3
(i) Sketch on Fig. 1.3, the corresponding graph to show how the force on block B varies with time during the collision between block A and block B.
(ii) Explain how your graph shows that the total momentum of the blocks remains unchanged during the collision.
\qquad
\qquad
\qquad
\qquad
(c) Block B hits the wall elastically, rebounds and collides with block A. Block A then moves and compresses the spring. State, with a reason, whether the maximum compression of the spring will be greater than, less than or equal to 2.0 cm .
\qquad
\qquad
\qquad
\qquad

2 A block of mass $2 m$ initially rests on a track at the bottom of the circular, vertical loop of radius r as shown in Fig. 2.1. A bullet of mass m strikes the block horizontally and remains embedded in the block as the block and bullet circle the loop. Assume frictional force of the loop is negligible.

Fig. 2.1
(a) Show that the minimum speed of the block at the top of the loop such that it just completes the vertical circular motion without falling off the loop is given by

$$
\sqrt{g r}
$$

where g is the acceleration due to gravity.
(b) Derive an expression for the minimum speed of the bullet in order for the block to just complete the vertical circular motion without falling off the loop.

Explain your working.

3 (a) A ball is held between two fixed points A and B by means of two stretched springs as shown in Fig. 3.1.

Fig. 3.1
The ball is free to oscillate horizontally on the smooth horizontal table. The variation of the acceleration a of the ball with its displacement x from its equilibrium position is shown in Fig. 3.2.

Fig. 3.2
(i) State and explain the features of Fig. 3.2 which indicate that the moving ball is exhibiting simple harmonic motion.
\qquad
\qquad
\qquad
(ii) On Fig. 3.3, sketch the variation of the velocity v of the ball with x. Include the values of the horizontal and vertical intercepts of the graph.

Fig. 3.3
(b) A ball is attached to the apparatus illustrated in Fig. 3.4 in order to investigate its vertical oscillations on a spring. The amplitude of the vibrations produced by the oscillator is constant.

Fig. 3.4

The variation of the amplitude of the oscillations of the ball with the frequency f of the oscillator is shown in Fig. 3.5. The oscillations are assumed to be simple harmonic.

Fig. 3.5
(i) State the natural frequency of the oscillations.
\qquad
natural frequency $=$ Hz
(ii) Explain why Fig. 3.5 shows that the oscillations are damped.
\qquad
\qquad
\qquad
\qquad
(iii) On Fig. 3.5, sketch a possible variation of the amplitude of the oscillations of the ball with f if the oscillations are damped with a greater resistive force.

4 (a) A Keck telescope at Mauna Kea, Hawaii, is the world's largest optical telescope and has a diameter of 10 m and is set to detect waves of wavelength 600 nm . The distance, in metres, from the aperture to the viewing screen is L.
(i) Calculate the diffraction angle $\theta_{\min }$ at which the first minimum of the diffraction pattern is observed on the viewing screen.

$$
\begin{equation*}
\theta_{\min }= \tag{2}
\end{equation*}
$$

$$
\mathrm{rad}
$$

(ii) Determine, in terms of L, the width of the central bright fringe of the diffraction pattern observed on the viewing screen.
width = m
(iii) On Fig. 4.1, sketch a graph to show the variation with diffraction angle θ from the central maximum of the intensity I of the light on the viewing screen. Include the angles for the first minima.

Fig. 4.1
(b) A radio telescope at Arecibo, Puerto Rico, has a diameter of 305 m and is designed to detect radio waves of wavelength 0.75 m .
(i) State two physical quantities that determine the resolving power of the telescope.
quantity 1
quantity 2 :
(ii) Explain quantitatively whether the Keck telescope used in the detection of light waves has a higher or lower resolving power compared to the radio telescope used in the detection of radio waves at Arecibo.
\qquad
\qquad
\qquad
\qquad
\qquad

5 (a) Define potential difference between two points in a circuit.
\qquad
\qquad
\qquad
(b) A thermistor and a variable resistor are connected in a potential divider circuit as shown in Fig. 5.1.

The battery has an e.m.f. of E, the thermistor has a resistance R_{T} and the variable resistor has a resistance R_{v}.

This circuit is used to activate an alarm system whenever the ambient temperature rises to a certain value. The alarm bell will sound if the potential difference across it increases beyond the pre-set value.

Fig. 5.1
(i) State an expression for the potential difference across the variable resistor in terms of E, R_{T} and R_{v}.
(ii) State and explain across which two terminals, XY or YZ , the alarm bell should be connected to the circuit in Fig. 5.1.
\qquad
\qquad
\qquad
\qquad
\qquad
(iii) State and explain the purpose of the variable resistor in the circuit.
\qquad
\qquad
\qquad
\qquad
(c) Fig. 5.2 shows a potentiometer circuit consisting of a 100 cm length of wire $A B$ and a driver cell E_{1} of e.m.f. 2.0 V and of negligible internal resistance.

Fig. 5.2
(i) State the value of the potential gradient along $A B$.
potential gradient $=$ \qquad $\mathrm{V} \mathrm{cm}^{-1}$
(ii) A circuit consisting of a cell E_{2} and a variable resistor R is now connected to the potentiometer as shown in Fig. 5.3.

Fig. 5.3

The resistance of R is set to 10.0Ω and the sliding contact C is adjusted until there is no current flowing in the galvanometer. The length $A C$ is found to be 60.0 cm .

The resistance of R is now set to 3.0Ω and the experiment is repeated. The length $A C$ is now 54.0 cm .

Calculate the e.m.f. and internal resistance r of cell E_{2}.
e.m.f. of cell $E_{2}=$ V
internal resistance of cell $E_{2}=$ Ω [5]

6 (a) A coil with 500 turns is placed in a uniform magnetic field of flux density $5.0 \times 10^{-2} \mathrm{~T}$. The area of the coil perpendicular to the field is $2.5 \times 10^{-2} \mathrm{~m}^{2}$, as shown in Fig. 6.1.

Fig. 6.1
Calculate the magnetic flux linkage of the coil. Give an appropriate unit.
(b) The coil in (a) is rotated at a constant angular velocity about the axis in Fig. 6.1. The flux linkage Φ of the coil varies with time t, as shown in Fig. 6.2.

Fig. 6.2
(i) Calculate the maximum induced electromotive force (e.m.f.).

```
maximum induced e.m.f. \(=\) .V [2]
```

(ii) Calculate the root-mean-square value of the induced e.m.f.
root-mean-square e.m.f. $=$.V [1]
(iii) Explain why the flux linkage changes sinusoidally as the coil is rotated.
\qquad
\qquad
\qquad
\qquad

7 Fig. 7.1 shows some of the energy levels of an helium atom.

Fig. 7.1
An electron with kinetic energy of 50.0 eV collides with a helium atom in its ground state and the helium atom is excited.
(a) (i) In Fig. 7.1, use arrows to show the possible energy transitions when the excited helium atom de-excites.
(ii) Calculate the shortest wavelength of the radiation that is emitted from the transitions in (a)(i).
(b) When a beam of white light is passed through a cold helium gas, an absorption spectrum of coloured background with dark lines is observed.

Use Fig. 7.1 to explain quantitatively why one of the dark lines correspond to a wavelength of 471 nm .
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Section B

Answer one question from this Section in the spaces provided.

8 (a) Two ions S and T, each of negative charge $-q$, are held stationary at a distance of 2.0 cm from each other as shown in Fig. 8.1. P_{1} is the midpoint between S and T .

Fig. 8.1
State what it means by
(i) the electric field strength at P_{1},
\qquad
\qquad
\qquad
\qquad
(ii) the electric potential at P_{1}.
\qquad
\qquad
\qquad
\qquad
(b) The value of q is known to be $1.6 \times 10^{-19} \mathrm{C}$. A third ion R of positive charge $+q$ is introduced into the system at a distance of 4.0 cm from ions S and T as shown in Fig. 8.2. All three ions are held stationary.
P_{2} is the midpoint between R and T.

Fig. 8.2
(i) Calculate the amount of work done required to assemble R .
work done $=$
(ii) Without calculations, explain whether the work done required is more or less if R were to be placed at P_{2} instead.
\qquad
\qquad
\qquad
\qquad
(iii) With reference to the direction of the electric field strength along $R P_{1}$, describe the variation of electric potential along the line joining ion R to the point P_{1}.
\qquad
\qquad
\qquad
\qquad
(c) (i) Show that the magnitude of the electric field strength that R experiences for the ion assembly in Fig. 8.2 is given by $1.74 \times 10^{-6} \mathrm{~N} \mathrm{C}^{-1}$.
(ii) R is subsequently released.

Hence, calculate

1. the magnitude and state the direction of the resultant force on R just as it is released,
\qquad
force $=$ N
2. the magnitude of the initial acceleration of R if it has a mass of $2.58 \times 10^{-26} \mathrm{~kg}$.
acceleration $=\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . \mathrm{m} \mathrm{s}^{-2}$
(d) Suggest with a reason, the subsequent motion of R after passing through the line joining S and T.
\qquad
\qquad
\qquad
\qquad

9 (a) Distinguish between gravitational field strength and acceleration of free fall.
\qquad
\qquad
\qquad
\qquad
(b) Assuming Earth to be a sphere, explain with the help of free body diagrams, the difference in the weight of a person measured on an electronic balance at the poles and at the equator.
\qquad
(c) Assuming Earth to be a sphere of radius $6.4 \times 10^{6} \mathrm{~m}$, calculate the mass of Earth.
mass of Earth =
(d) Calculate the radius of the orbit of a geostationary satellite.
radius $=$ m [3]
(e) (i) A space mission is to launch a space shuttle from Earth. The space shuttle comprise of a land rover to be delivered to the moon.

Using the answer in part (c), calculate the distance from the centre of Earth where the resultant gravitational field strength due to the Earth and the Moon is zero.

The mass of the Moon is $7.4 \times 10^{22} \mathrm{~kg}$ and distance between centres of the Earth and the Moon is $3.8 \times 10^{8} \mathrm{~m}$.
(ii) On Fig. 9.1, sketch the variation of gravitational potential ϕ between the surface of Earth and the surface of the moon.

Include the value obtained in (e)(i).

Fig. 9.1
(iii) Calculate the minimum launch speed of the space shuttle from Earth such that the space shuttle will be able to reach the surface of the moon.
\qquad $\mathrm{m} \mathrm{s}^{-1}$
-- Blank Page --

Catholic Junior College

JC2 Preliminary Examinations
Higher 2

PHYSICS

9749/01
Paper 1: Multiple Choice
18 September 2020

Additional Materials: Multiple Choice Answer Sheet

READ THESE INSTRUCTIONS FIRST

Write your name and tutorial group on this cover page.
Write and/or shade your name, NRIC / FIN number and HT group on the Answer Sheet (OMR sheet), unless this has been done for you.
Write in soft pencil.
Do not use staples, paper clips, highlighters, glue or correction fluid.
Answer all 30 questions in this paper.
For each question there are four possible answers, A, B, C and D. Choose the one you consider correct and record your choice in soft pencil on the separate Answer Sheet (OMR sheet).

Read the instructions on the Answer Sheet carefully.
Each correct answer will be awarded one mark. A mark will not be deducted for a wrong answer.
Any rough working should be done in this booklet.
The use of an approved scientific calculator is permitted, where appropriate.

MARK SCHEME

Physics Data:

speed of light in free space
permeability of free space
permittivity of free space
elementary charge
the Planck constant
unified atomic mass constant
rest mass of electron
rest mass of proton
molar gas constant
the Avogadro constant the Boltzmann constant gravitational constant acceleration of free fall
$c=3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
$\mu_{0}=4 \pi \times 10^{-7} \mathrm{H} \mathrm{m}^{-1}$
$\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{~F} \mathrm{~m}^{-1}$
$\approx(1 /(36 \pi)) \times 10^{-9} \mathrm{~F} \mathrm{~m}^{-1}$
$e=1.60 \times 10^{-19} \mathrm{C}$
$h=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
$u=1.66 \times 10^{-27} \mathrm{~kg}$
$m_{e}=9.11 \times 10^{-31} \mathrm{~kg}$
$m_{P}=1.67 \times 10^{-27} \mathrm{~kg}$
$R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
$N_{A}=6.02 \times 10^{23} \mathrm{~mol}^{-1}$
$k=1.38 \times 10^{-23} \mathrm{~mol}^{-1}$
$G=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$
$g=9.81 \mathrm{~m} \mathrm{~s}^{-2}$

Physics Formulae:

uniformly accelerated motion
work done on / by a gas
hydrostatic pressure
gravitational potential
temperature
pressure of an ideal gas
mean translational kinetic energy of an ideal gas
molecule
displacement of particle in s.h.m.
velocity of particle in s.h.m.
electric current
resistors in series
resistors in parallel
electric potential
alternating current / voltage
magnetic flux density due to a long straight wire
magnetic flux density due to a flat circular coil
magnetic flux density due to a long solenoid
radioactive decay
decay constant

1 Which of the following is not a reasonable estimate?
A The power of an electric iron is 1 kW .
B The weight of a man on the Moon is 100 N .
C The momentum of a tennis ball served by a professional tennis player is 4 Ns .
D The kinetic energy of a double-decker bus moving at a constant speed on an expressway is 50 kJ .
Answer: D
Usual electric iron power is between 1000 - 1800 W. Reasonable.
On moon, g is approximately $1.6 \mathrm{~m} \mathrm{~s}^{-2} . W=100 \mathrm{~N}$ on moon translates to m is approximately 63 kg . Reasonable.

Tennis ball m is approximately $60 \mathrm{~g} . p=4 \mathrm{Ns}$ translates to v is approximately $67 \mathrm{~m} \mathrm{~s}^{-1}$ is approximately $240 \mathrm{~km} \mathrm{~h}^{-1}$. Reasonable.

Bus m is approximately $10000 \mathrm{~kg}, \mathrm{KE}$ is approximately 50 kJ translates to v is approximately $3.2 \mathrm{~m} \mathrm{~s}^{-1}$ is approximately $11 \mathrm{~km} \mathrm{~h}^{-1}$. Not reasonable.

2 Four students A, B, C and D measured the potential difference across an electric component. Each student obtained five sets of data for the potential difference.

If the actual potential difference is $1.65 \times 10^{-2} \mathrm{~V}$, which student's measurement was accurate but not precise?

Potential difference / 10-2 $\mathbf{~ V}$						
A	1.61	1.65	1.65	1.58	1.61	1.62
B	1.66	1.68	1.63	1.64	1.65	1.65
C	1.65	1.64	1.65	1.65	1.66	1.65
D	1.69	1.70	1.69	1.70	1.69	1.69

Answer: B

Student A's results: mean value $=1.62 \times 10^{-2} \mathrm{~V}$, spread $=0.07 \times 10^{-2} \mathrm{~V}$
Student B's results: mean value $=1.65 \times 10^{-2} \mathrm{~V}$, spread $=0.05 \times 10^{-2} \mathrm{~V}$
Student C's results: mean value $=1.65 \times 10^{-2} \mathrm{~V}$, spread $=0.02 \times 10^{-2} \mathrm{~V}$
Student D's results: mean value $=1.69 \times 10^{-2} \mathrm{~V}$, spread $=0.01 \times 10^{-2} \mathrm{~V}$
The actual potential difference is $1.65 \times 10^{-2} \mathrm{~V}$
Hence, student B's results are accurate (low systematic errors, mean value close to actual value) but not precise (high random errors, large spread).

3 A boat moves at velocity of $4 \mathrm{~m} \mathrm{~s}^{-1}$ due south in still water across a lake. It then experiences a current flowing towards the west. The velocity of the boat changes to $7 \mathrm{~m} \mathrm{~s}^{-1}$.

What is the change in the velocity of the boat due to the current?
A $3 \mathrm{~m} \mathrm{~s}^{-1}$ due west
B $3 \mathrm{~m} \mathrm{~s}^{-1}$ due west of south
C $6 \mathrm{~m} \mathrm{~s}^{-1}$ due west
D $6 \mathrm{~m} \mathrm{~s}^{-1}$ due west of south
Answer: C
Boat's final velocity must be due west of south.
Direction of change in velocity must be that of the current's direction, i.e. due west.

$v_{i}=4 \mathrm{~m} \mathrm{~s}^{-1}$, south	$-v_{i}$, north
\downarrow	

Magnitude of change in velocity, $|\Delta v|=\sqrt{\left|v_{f}{ }^{2}\right|-\left|v_{i}{ }^{2}\right|}=\sqrt{7^{2}-4^{2}}=6 \mathrm{~m} \mathrm{~s}^{-1}$

4 Two cars are initially side-by-side and at rest. They then accelerate in the same direction along the same straight line at different uniform rates. After 4.0 s , one of the cars is 12 m ahead of the other.

If they continue to accelerate at the same rate, how far apart will they be 6.0 s after they started?
A 15 m
B 18 m
C 22 m
D 27 m

Answer: D

Method 1 (graphical method)

Distance apart at $4 \mathrm{~s}=$ Shaded area A $=12 \mathrm{~m}$
Distance apart at $6 \mathrm{~s}=$ Shaded areas A and B
By similar triangles,

$$
\begin{gathered}
\frac{\text { Area } A}{\text { Area } A+\text { Area } B}=\left(\frac{4}{6}\right)^{2} \\
\frac{12}{\text { Area } A+\text { Area } B}=\left(\frac{4}{6}\right)^{2} \\
\text { Area } A+\text { Area } B=12\left(\frac{6}{4}\right)^{2}=27 m
\end{gathered}
$$

Method 2 (using kinematics equations)

Using S $=u t+1 / 2$ at 2
Since they both start from rest, $\mathbf{u}=0$.
At $t=4 \mathrm{~s}, \mathrm{~S}_{1}-\mathrm{S}_{2}=1 / 2 a_{1}(4)^{2}-1 / 2 a_{2}(4)^{2}=12 \mathrm{~m}$
Hence $a_{1}-a_{2}=24 / 16$
At $t=6 s, S_{1}-S_{2}=1 / 2 a_{1}(6)^{2}-1 / 2 a_{2}(6)^{2}=1 / 2(6)^{2}\left(a_{1}-a_{2}\right)=27 \mathrm{~m}$

5 A tennis ball of mass 0.060 kg is moving normally towards a racket with an initial velocity of $5.0 \mathrm{~m} \mathrm{~s}^{-1}$ and rebounds in the opposite direction.

The force of the racket exerted on the tennis ball varies with time as shown.

What is the final velocity of the ball when it leaves the racket?
A $45 \mathrm{~m} \mathrm{~s}^{-1}$
B $\quad 50 \mathrm{~m} \mathrm{~s}^{-1}$
C $\quad 55 \mathrm{~m} \mathrm{~s}^{-1}$
D $95 \mathrm{~m} \mathrm{~s}^{-1}$

Answer: A

Take final velocity direction as positive direction.
Area under the force-time graph represents the impulse on the tennis ball.

$$
\begin{gathered}
F \Delta t=\Delta p \\
\frac{1}{2}(0.040)(150)=m \Delta v \\
3=0.060\left(v_{f}-(-5.0)\right) \\
v_{f}=45 \mathrm{~ms}^{-1}
\end{gathered}
$$

6 A tower is pulled by a bundle of steel cables anchored to the ground, as shown by the simplified sketch below.

The tower is acted upon by three forces. Which diagram could show the position and direction of each of the forces when the tower is in equilibrium?

Answer: A
If 3 coplanar and non-parallel forces act on a body which is in equilibrium, the lines of action of all 3 forces must pass through a common point. C and D are eliminated.

Option B is incorrect as the steel cable is in tension not compression and there is a net force to the right and therefore the tower would not be in equilibrium.

7 A diving board of length 5.0 m is hinged at one end and supported 2.0 m from this end by a spring of spring constant $10 \mathrm{kN} \mathrm{m}^{-1}$. A child of mass 40 kg stands at the far end of the board.

What is the compression of the spring caused by the child standing on the end of the board?
A 1.0 cm
B 1.6 cm
C 9.8 cm
D 16 cm
Answer: C

Taking moments about hinge,
Sum of anticlockwise moments = Sum of clockwise moments
$5.0(40 \times 9.81)=2.0 \mathrm{~F}$
$5.0(40 \times 9.81)=2.0(10000) \mathrm{x}$
$x=0.0981 \mathrm{~m}=9.81 \mathrm{~cm}=9.8 \mathrm{~cm}$
where $\mathrm{F}=\mathrm{kx}$

8 The diagram shows the velocity-time graph of a 500 kg elevator during its upward motion.

What is the maximum power generated by the engine of the elevator?
A 7810 W
B 9310 W
C 9810 W
D 10300 W

Answer: D

Let T be the upward pull by the elevator cable on the elevator.
Power = Tv
P is max when product $T v$ is max.
T is max when elevator's acceleration is upwards, i.e. from $t=0 \mathrm{~s}$ to 4.0 s .
Maximum power generated just before $t=4.0 \mathrm{~s}$, when speed is max.
$T-m g=m a$
$T=m a+m g=500\left(\frac{2.0}{4.0}+9.81\right)$
$P_{\max }=T v=500\left(\frac{2.0}{4.0}+9.81\right)(2.0)=10310=10300 \mathrm{~W}$

9 Two identical objects, P and Q , are placed on a flat rough circular disc. Q is at a further distance from the centre of the disc compared to P.

The disc starts spinning from rest about its central axis with increasing speed. At a certain speed, one of the objects starts to slide off the disc.

Q slides off the disc first because
A the friction experienced by P and Q are always equal.
B it moves with a larger angular velocity compared to P.
C it requires greater friction to keep it in its position compared to P.
D the friction experienced by P is larger than Q before one of the objects slide off the disc.
Answer: C

$$
F_{c}=m r \omega^{2}
$$

Both objects have the same mass and same angular velocity, but the centripetal force required for Q's circular motion is larger due to larger radius.
When the centripetal force required exceeds the maximum static friction available, Q starts to slide.

10 P and Q are two points above Earth's surface at distances r and $2 r$ respectively from the centre of the Earth.

The gravitational potential at P is $-800 \mathrm{~kJ} \mathrm{~kg}^{-1}$. What is the gain in gravitational potential energy of a 2 kg mass when it is moved from P to Q ?
A -400 kJ
B -200 kJ
C 400 kJ
D 800 kJ

Answer: D

Since the distance from earth changes from r to $2 r$, the gravitational potential at Q is $-400 \mathrm{~kJ} \mathrm{~kg}^{-1}$.

Gain in gravitational potential energy
= final GPE - initial GPE
$=2.00(-400-(-800))$
$=800 \mathrm{~kJ}$

11 Planet X has a density of ρ and radius of R. The gravitational acceleration at its surface is a. What is the gravitational acceleration at the surface of Planet Y which has a density of 2ρ and radius of $2 R$?
A 0.5 a
B a
C 2 a
D $4 a$

Answer: D
$a=\frac{G M}{R^{2}}=\frac{G \rho V}{R^{2}}=\frac{G \rho\left(\frac{4}{3} \pi R^{3}\right)}{R^{2}}=\frac{4 G \rho R \pi}{3}$
$a \propto \rho R$
Since ρ and R is doubled, a^{\prime} is 4 a.

12 A particle of mass $5.0 \times 10^{-3} \mathrm{~kg}$ performing simple harmonic motion of amplitude 150 mm takes 47 s to make 50 oscillations.

What is the maximum kinetic energy of the particle?
A $2.0 \times 10^{-3} \mathrm{~J}$
B $2.5 \times 10^{-3} \mathrm{~J}$
C $3.9 \times 10^{-3} \mathrm{~J}$
D $5.0 \times 10^{-3} \mathrm{~J}$
Answer: B
Frequency $=50 / 47 \mathrm{~Hz}$
$K E_{\text {max }}=\frac{1}{2} m\left(\omega x_{0}\right)^{2}=\frac{1}{2} m\left(2 \pi f x_{0}\right)^{2}$
$=(0.5)\left(5.0 \times 10^{-3}\right)\left(2 \pi(50 / 47)\left(150 \times 10^{-3}\right)\right)^{2}$
$=2.5 \times 10^{-3} \mathrm{~J}$

13 Which of the following statements is true for a stationary sound wave?
A The pressure at a displacement node is always very high.
B The pressure at a displacement antinode is always very high.
C The pressure at a displacement node fluctuates between high to low.
D A stationary wave can be formed by two waves with the same amplitude and frequency, travelling at the same direction towards a point.
Answer: C
Displacement node is the location of pressure antinode for sound wave. By definition, pressure antinode is the location where the pressure fluctuate from the highest to the lowest.

14 In the figure below, graph \mathbf{C} shows how the pressure of a fixed mass of an ideal gas varies with its volume at a constant temperature.

If a similar ideal gas with double the mass is used and the experiment is conducted at the original constant temperature, which curve (A, B, C or D) gives the variation of the gas pressure with its volume?

Answer: B
$\mathrm{pV}=\mathrm{nRT}$
When mass is doubled for the same gas, \mathbf{n} is doubled.
At the same T , product pV remains constant, but is doubled for the $2^{\text {nd }}$ gas.
\rightarrow For the same V, p is doubled.

15 An ideal gas undergoes a cyclic process in three stages:
(1) Expansion at constant pressure,
(2) Decrease in pressure at constant volume,
(3) Compression at constant temperature.

Which of the following must be true?
A There is net heat released by the gas during the cycle.
B The net work done on the gas during the cycle is positive.
C The net work done by the gas during the cycle is equal to the net heat transferred to the gas.
D The change in internal energy of the gas is equal to the work done during the constant pressure stage minus the work done during the constant temperature stage.

Answer: C

Represent the cyclic process on a p-V diagram:

From the p-V diagram there is NET work done BY gas during the cycle, so net W is negative \rightarrow Eliminate option B.

Since net work done is non-zero, Option D would imply that ΔU is non-zero but in fact per cycle $\Delta \mathbf{U}$ is zero.

Per cycle, $\Delta \mathbf{U}=0$
\rightarrow Eliminate option D.
By $\Delta \mathbf{U}=\mathbf{Q}+\mathbf{W}, \quad \mathbf{0}=\mathbf{Q}+$ (negative value), so net \mathbf{Q} is positive which implies that there is net heat transferred TO the gas during the cycle
\rightarrow Eliminate option A.
Conversely, option C is correct.

16 A beam of plane-polarised light of intensity I falls normally onto a thin sheet of polaroid.
If the transmitted beam has an intensity of $\frac{3}{4} I$, what is the angle between the plane of polarisation of the incident beam and the polarising axis of the polaroid?
A 30°
B 41°
C 45°
D 60°

L2 Answer: A

Using Malus' Law,

$$
\begin{aligned}
& I_{\text {transmitted }}=I_{0} \cos ^{2} \theta \\
& \frac{3}{4} I=I \cos ^{2} \theta \\
& \cos ^{2} \theta=\frac{3}{4} \\
& \cos \theta=\frac{\sqrt{3}}{2} \\
& \theta=30^{\circ}
\end{aligned}
$$

17 A hemispherical bowl of radius 200 mm is completely filled with water at rest. If its side is tapped gently, a circular water wave pulse can be produced on the surface of the water which travels inwards with a speed of $250 \mathrm{~mm} \mathrm{~s}^{-1}$.

What is the radius of the pulse and its direction of travel one second after the pulse is produced?

A zero, stationary
B 50 mm , inwards
C 50 mm , outwards
D 100 mm , outwards

L2 Answer: C

After 1 second, the wave would have travelled a total distance of 250 mm .
However, since the radius of the bowl is 200 mm , there will be a reflection of the wave at the centre of the bowl when the wave has travelled 200 mm .

The wave would have then travelled outward for 50 mm . Thus, the radius of the circle will be 50 mm .

18 A stationary wave is formed on a stretched string of length L between two points as shown below.

Particles Q and R on the string are separated by distance s. The total energy of Q and of R are E_{Q} and E_{R} respectively.

Which of the following gives the correct phase difference between Q and R, and the relationship between E_{Q} and E_{R} ?

	phase difference / rad	total energy
\mathbf{A}	$\frac{2 \mathrm{~s}}{\mathrm{~L}} \pi$	$E_{Q}=E_{R}$
\mathbf{B}	$\frac{2 \mathrm{~s}}{\mathrm{~L}} \pi$	$E_{Q}<E_{R}$
\mathbf{C}	π	$E_{Q}=E_{R}$
\mathbf{D}	π	$E_{Q}<E_{R}$

Answer: D
Since Q and R are in adjacent segments of the same stationary wave, they are π radians apart.
As Q has a smaller amplitude compared to R, it has a smaller total energy.

19 Light of wavelength λ is incident normally on a diffraction grating of slit spacing five times the wavelength of the light.

What is the angle of diffraction of the second order maximum?
A 12°
B 24°
C 37°
D 45°

Answer: B

$$
\begin{aligned}
& d \sin \theta=n \lambda \\
& \sin \theta=\frac{n \lambda}{d} \\
& =\frac{2 \lambda}{5 \lambda} \\
& =\frac{2}{5} \\
& \theta=24^{\circ}
\end{aligned}
$$

20 The figure below shows two horizontal parallel metal plates. The upper plate is maintained at a higher potential relative to the lower plate.

Line XY is inclined at an angle θ to the metal plates.
Which of the following graphs best shows the variation of electric potential V with distance r from X along the line $X Y$?
A

B

D

Answer: B

Since θ and E are constant, V has a linear relationship to r, eliminating options C and $D . E$ is the electric field strength between the plates.

Furthermore, X is at a higher potential compared to Y . Therefore, option A is not correct.

Mathematical proof

Point P on $X Y$ is defined to be at a perpendicular distance $r \sin \theta$ from the upper plate.

$$
\begin{aligned}
& E_{P}=\frac{\Delta V_{X \rightarrow P}}{r \sin \theta} \\
& \Delta V_{X \rightarrow P}=E_{P}(r \sin \theta) \\
& =r\left(E_{P} \sin \theta\right)
\end{aligned}
$$

Therefore, the graph's equation is given by

$$
\begin{aligned}
& V=V_{P} \\
& =V_{X}-\Delta V_{X \rightarrow P} \\
& =V_{X}-r\left(E_{P} \sin \theta\right)
\end{aligned}
$$

Since E_{P} is the same at all points in a uniform field and $\sin \theta$ is a constant, the equation above can be simplified to

$$
V=V_{X}-k r
$$

where k and V_{x} are constants.

21 Two charges are fixed at a distance of 1.0 mm apart as shown below.
A uniform electric field with field strength $4.0 \mathrm{~N} \mathrm{C}^{-1}$ is applied in the direction from left to right.

Which statement describes the net force and torque experienced by the pair of charges?
A No net force and no torque acts.
B No net force acts and the torque is $8.0 \times 10^{-12} \mathrm{~N} \mathrm{~m}$ in the clockwise direction.
C A net force of $3.6 \times 10^{-14} \mathrm{~N}$ acts and the torque is $4.0 \times 10^{-12} \mathrm{~N} \mathrm{~m}$ in the clockwise direction
D A net force of $3.6 \times 10^{-14} \mathrm{~N}$ acts and the torque is $8.0 \times 10^{-12} \mathrm{~N} \mathrm{~m}$ in the clockwise direction
Answer: B
An electric dipole context where the two charges are connected by an electric force of attraction


```
torque \(=q E d\)
\(=\left(2.0 \times 10^{-9}\right)(4.0)\left(1.0 \times 10^{-3}\right)\)
\(=8.0 \times 10^{-12} \mathrm{~N} \mathrm{~m}\)
```

22 A battery causes a current of 3 A to flow through a metal wire of diameter 2.0 mm . The number density of the free electrons in the metal wire is $8.5 \times 10^{28} \mathrm{~m}^{-3}$.

What is the average speed of the electrons drifting along the wire?
A $2.0 \times 10^{-11} \mathrm{~m} \mathrm{~s}^{-1}$
B $2.0 \times 10^{-5} \mathrm{~m} \mathrm{~s}^{-1}$
C $7.0 \times 10^{-11} \mathrm{~m} \mathrm{~s}^{-1}$
D $7.0 \times 10^{-5} \mathrm{~m} \mathrm{~s}^{-1}$

Answer: D
$\mathrm{I}=\mathrm{nAvq}$
$3=\left(8.5 \times 10^{28}\right)\left(\pi \times 0.0010^{2}\right) v\left(1.60 \times 10^{-19}\right)$
$v=7.0 \times 10^{-5} \mathrm{~m} \mathrm{~s}^{-1}$

23 A heater of resistance 5.0Ω dissipates 125 W of power when current flows through it. The amount of energy converted to heat when 0.4 C of charge passes through it is
A 2 J
B 10 J
C 50 J
D 625 J

Answer: B

$$
P=\frac{V^{2}}{R} \Rightarrow V^{2}=125 \times 5 \Rightarrow \text { p.d across heater, } V=\sqrt{625}=25 \mathrm{~V}
$$

Since $V=\frac{W}{Q} \Rightarrow$ Amount of energy conveted to heat, $W=V Q=25 \times 0.4=10 \mathrm{~J}$

24 A flat circular coil M is mounted co-axially inside another flat circular coil N. N has three times the radius of M .

The two coils are connected in series to the same power supply. At the centre of the two coils, the magnetic field created by M is opposite in direction to the magnetic field created by N .

What is the ratio of the number of turns of coil M to the number of turns of coil N to create zero magnetic flux density at the centre?
A $1: 3$
B $2: 3$
C $3: 1$
D $3: 2$

Answer: A
For flat circular coil, at its CENTRE: $B=\frac{\mu_{0} N I}{2 R}$
For resultant flux density at the centre to zero for both coils, B_{N} and B_{M} at the centre must be equal in magnitude. In series implies same magnitude of current I flows in both coils.

$$
\begin{gathered}
\mathrm{B}_{\mathrm{N}}=\mathrm{B}_{\mathrm{M}} \\
\frac{\mu_{0} N_{N} I}{2(3 r)}=\frac{\mu_{0} N_{M} I}{2(r)} \\
\frac{N_{N}}{3}=\frac{N_{M}}{1} \\
\frac{N_{M}}{N_{N}}=\frac{1}{3}
\end{gathered}
$$

25 In a velocity selection, positively charged particles $+q$ enter an electric field of strength E and a magnetic field of flux density B that are applied perpendicularly to each other in the same region. Particles which are travelling at speed v are undeflected by the cross-fields.

Which of the following is necessarily true?
A To select particles of charge $-q$ with speed v, there is a need to reverse the direction of either E or B.
B To select charged particles with speed $2 v$, with the magnitude of B unchanged, the magnitude of E needs to be doubled.
C For particles of charge $-q$, there is a need to reverse the directions of both E and B in order to select the particles with speed v.
D If the magnitude of charge doubles, the magnitudes of the electric field strength and magnetic flux density cannot remain as E and B to select the particles with speed v.

Answer: B
For the charged particles to be undeflected by the crossed-fields,
$\mathrm{F}_{\mathrm{E}}=\mathrm{F}_{\mathrm{B}}$
$q \mathrm{E}=\mathrm{Bqv}$
$v=E / B$
Option A - False. If the charge is of opposite polarity, with no change made at all to E and B, the direction of both forces reverse, equilibrium of forces to select those with speed v is still achieved.

Option B - True. Since v=E/B.
Option C - False. Because with directions of E and B maintained, particles of speed v can still be selected.

Option D - False. If q doubles, F_{E} and F_{B} increase by the same factor. q has no effect on the selected speed.

26 A copper disc spins freely between the poles of an electromagnet at a constant speed. P and Q are two metallic brushes making contact with the axle and the edge of the disc as shown in the diagram. A resistor R is connected across P and Q .

Which of the following statements is correct?
A A current flows from P through R to Q, and P is at a higher potential then Q.
B A current flows from Q through R to P, and Q is at a higher potential then P.
C A current flows from P to Q in the disc, and P is at a higher potential then Q.
D A current flows from Q to P in the disc, and Q is at a higher potential then P.

Answer: A
Using Fleming's RH Rule, induced current flows from the edge of the disc to the axle, i.e. Q to P.

Current then flows through the external circuit from P through R to Q and returns back to the disc.

Magnetic force causes the free electrons in the disc to drift towards the edge, so the edge becomes more negatively charged compared to the axle which becomes more electron deficient. Hence \mathbf{P} is higher potential than \mathbf{Q}.
[Recall also that current flows from higher to lower potential in the external circuit, but from lower to higher potential within a source of e.m.f.]

27 A sinusoidal alternating current I / A varies with time t / s according to the equation

$$
I=2.0 \sin (100 \pi t)
$$

This current is allowed to pass through a resistor of resistance 5.0Ω.
Which of the following shows how the power $P /$ W dissipated in the resistor varies with t / s ?

A

C

D

Answer: A

From the equation, compare with the general equation: $I=I_{o} \sin (\omega t)$ $\mathrm{I}_{\mathrm{o}}=2.0 \mathrm{~A} \quad$ and $\quad \omega=100 \pi$
$P_{0}=I_{0}^{2} R=\left(2.0^{2}\right)(5.0)=20 \mathrm{~W}$
$T=2 \pi / \omega=2 \pi / 100 \pi=0.020 \mathrm{~s}$
P-t graph is a sine-squared function.

28 The primary coil of an ideal transformer has 1000 turns and is connected to a sinusoidal a.c. supply. The secondary coil has 40 turns and is connected to an ideal diode and a load.

If the root-mean-square (r.m.s) voltage across the load is 6.5 V and the mean power dissipated in the load is 12 W , what is the r.m.s current in the primary coil?
A 0.026 A
B $\quad 0.074 \mathrm{~A}$
C $\quad 0.10 \mathrm{~A}$
D $\quad 0.15 \mathrm{~A}$

Answer: C

On the secondary side, at the load, $I_{L r m s}=\frac{\langle P\rangle}{V_{L r m s}}=\frac{12}{6.5}=1.8462 \mathrm{~A}$
Since the current at the load is Half-wave rectified, it can be shown that

$$
I_{L r m s}=\sqrt{\frac{I_{L \text { peak }}{ }^{2}}{4}}=\frac{I_{L \text { peak }}}{2} \Rightarrow I_{\text {Lpeak }}=2 \times .1 .8462=3.6923 \mathrm{~A}
$$

On the secondary side before the diode, the current is Full-wave sinusoidal A.C.,

$$
I_{S r m s}=\frac{I_{\text {speak }}}{\sqrt{2}}=\frac{3.6923}{\sqrt{2}} \Rightarrow 2.6109 \mathrm{~A}
$$

Therefore using

$$
\begin{gathered}
\frac{I_{P}}{I_{S}}=\frac{N_{S}}{N_{P}} \\
I_{p}=\frac{40}{1000} \times 2.6108=0.10443=0.10 \mathrm{~A}
\end{gathered}
$$

2 The x-ray spectrum of a metal target is shown in the figure below.
9

Which of the following statements is correct?
A The smallest wavelength detected, $36 \times 10^{-11} \mathrm{~m}$, is dependent on the target material.
B The graph shows that electrons with a range of kinetic energies are used to bombard the target.
C The locations of the peaks can be used to identify the element that the target material is made of.
D The position of the peaks allow us to calculate the energy of the electrons used to bombard the target.

Answer: C

Option A is not correct because minimum wavelength (cut-off wavelength) depends on the maximum energy of the incident electrons and independent of the target material.
Option B is not correct because since the X-ray spectra will always contain bremsstrahlung radiation whether the electrons bombarding the metal target has a single energy or have a range of energies.

Option D is not correct because the position (wavelength) corresponding to the characteristic peaks is dependent only on the kind of target and not on the energy of the incoming electrons.

30 A photon of wavelength 555.00 nm , measured to an accuracy of 0.01 nm .
What is the minimum uncertainty in the location of the photon?
A $6.6 \times 10^{-23} \mathrm{~m}$
B $1.0 \times 10^{-11} \mathrm{~m}$
C $3.1 \times 10^{-2} \mathrm{~m}$
D $3.0 \times 10^{-1} \mathrm{~m}$

Answer: C
De Broglie Wavelength,

$$
\begin{gathered}
p=\frac{h}{\lambda} \\
\frac{\Delta p}{p}=\frac{\Delta h}{h}+\frac{\Delta \lambda}{\lambda}=\frac{\Delta \lambda}{\lambda} \\
\Delta p=\frac{\Delta \lambda}{\lambda} p=\frac{0.01}{555.00}\left(\frac{6.63 \times 10^{-34}}{555.00 \times 10^{-9}}\right)=2.1524 \times 10^{-32} \mathrm{~N} \mathrm{~m}
\end{gathered}
$$

Heisenberg Uncertainty Principle,

$$
\begin{gathered}
\Delta p \Delta x \gtrsim h \\
2.1524 \times 10^{-32} \Delta x \gtrsim 6.63 \times 10^{-34} \\
\Delta x \gtrsim 3.1 \times 10^{-2} \mathrm{~m}
\end{gathered}
$$

PHYSICS

9749/02

Paper 2: Structured Questions

Candidates answer on the Question Paper.
No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your name and class on all the work you hand in.
Write in dark blue or black pen in the space provided. [PILOT FRIXION ERASABLE PENS ARE NOT ALLOWED] You may use a soft pencil for any diagrams, graphs or rough working.
Do not use staples, paper clips, highlighters, glue or correction fluid.
The use of an approved scientific calculator is expected, where appropriate.
Answer all questions.

FOR EXAMINER'S USE		DIFFICULTY						
						L1	L2	L3
Q1	$/ 9$							
Q2	$/ 8$							
Q3	$/ 11$							
Q4	$/ 10$							
Q5	$/ 12$							
Q6	$/ 9$							
Q7	$/ 21$							
PAPER 2	$/ 80$							

Physics Data:

speed of light in free space	$=3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$	
permeability of free space	c permittivity of free space	μ_{0} $\varepsilon_{0}$$=4 \pi \times 10^{-7} \mathrm{H} \mathrm{m}^{-1}$
		$=\left(1.85 \times 10^{-12} \mathrm{~F} \mathrm{~m}^{-1}\right.$
elementary charge	$e=1.60 \times 1)^{-19} \times 10^{-9} \mathrm{~F} \mathrm{~m}^{-1}$	
the Planck constant	h	$=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
unified atomic mass constant	u	$=1.66 \times 10^{-27} \mathrm{~kg}$
rest mass of electron	$m_{e}=9.11 \times 10^{-31} \mathrm{~kg}$	
rest mass of proton	$m_{p}=1.67 \times 10^{-27} \mathrm{~kg}$	
molar gas constant	R	$=8.31 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
the Avogadro constant	$N_{A}=6.02 \times 10^{23} \mathrm{~mol}^{-1}$	
the Boltzmann constant	k	$=1.38 \times 10^{-23} \mathrm{~mol}^{-1}$
gravitational constant	G	$=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$
acceleration of free fall	g	$=9.81 \mathrm{~m} \mathrm{~s}^{-2}$

Physics Formulae:

uniformly accelerated motion
work done on / by a gas
hydrostatic pressure
gravitational potential
temperature
pressure of an ideal gas
mean translational kinetic energy of an ideal gas molecule
displacement of particle in s.h.m.
velocity of particle in s.h.m.
electric current
resistors in series
resistors in parallel
electric potential
alternating current / voltage
magnetic flux density due to a long straight wire
magnetic flux density due to a flat circular coil
magnetic flux density due to a long solenoid
radioactive decay
decay constant

$$
\begin{aligned}
s & =u t+1 / 2 a t^{2} \\
v^{2} & =u^{2}+2 a s \\
W & =p \Delta V \\
P & =\rho g h \\
\phi & =-\frac{G m}{r} \\
T / K & =T /{ }^{\circ} C+273.15 \\
p & =\frac{1}{3} \frac{N m}{V}\left\langle c^{2}\right\rangle \\
E & =\frac{3}{2} k T \\
x & =x_{0} \sin \omega t \\
v & =v_{0} \cos \omega t \\
& = \pm \omega \sqrt{x_{0}{ }^{2}-x^{2}} \\
I & =A n v q \\
R & =R_{I}+R_{2}+\ldots \\
1 / R & =1 / R_{I}+1 / R_{2}+\ldots \\
V & =\frac{Q}{4 \pi \varepsilon_{o} r} \\
x & =x_{0} \sin \omega t \\
B & =\frac{\mu_{o} I}{2 \pi d} \\
B & =\frac{\mu_{o} N I}{2 r} \\
B & =\mu_{o} n I \\
x & =x_{0} \exp (-\lambda t) \\
\lambda & =\frac{\ln 2}{t_{1}} \\
\lambda & \frac{1}{2} \\
x &
\end{aligned}
$$

Answer all the questions in the spaces provided.

1 (a) A ball is kicked from horizontal ground towards a vertical wall, as shown in Fig. 1.1.

Fig. 1.1 (not to scale)
The horizontal distance between the initial position of the ball and the base of the wall is 24 m . The ball is kicked with an initial velocity v at an angle of 28° above the horizontal. The ball hits the wall after a time of 1.50 s . Air resistance is negligible.
(i) Calculate the initial horizontal component $v x$ of the velocity of the ball.

$$
\begin{aligned}
& v_{x}= \\
& \mathrm{m} \mathrm{~s}^{-1} \\
& v_{X}=\frac{s_{X}}{t}=\frac{24}{1.50}=16 \mathrm{~m} \mathrm{~s}^{-1}
\end{aligned}
$$

(ii) Show that the initial vertical component v_{y} of the velocity of the ball is $8.5 \mathrm{~m} \mathrm{~s}^{-1}$.

$\tan 28^{\circ}=v_{\mathrm{Y}} / \mathrm{v}_{\mathrm{X}}$
$\mathrm{v}_{\mathrm{Y}}=\mathrm{v}_{\mathrm{X}} \tan 28^{\circ}=(16) \tan 28^{\circ}=8.5 \mathrm{~m} \mathrm{~s}^{-1}$ (shown)
OR
$v_{\mathrm{X}}=\mathrm{v} \cos 28^{\circ}--$ (1)
$\mathrm{v}_{\mathrm{Y}}=\mathrm{v} \sin 28^{\circ}--$ (2)
(2)/(1): $\tan 28^{\circ}=v_{Y} / v_{X}$
$v_{Y}=v_{X} \tan 28^{\circ}=(16) \tan 28^{\circ}=8.5 \mathrm{~m} \mathrm{~s}^{-1}$ (shown)
(iii) Calculate the time taken for the ball to reach its maximum height above the ground.

2 (a) Explain the origin of upthrust acting on a body in a fluid.
\qquad

Fluid pressure increases (directly proportional) with depth in the fluid.

This pressure differences results in a net upward force exerted by the fluid on the body, which is known as upthrust.
(b) In order to lift a submerged load of 600 kg from a seabed, a lifting bag made of an elastic material of negligible mass is filled with air and attached to the load, as shown in Fig. 2.1. The density of seawater is $1050 \mathrm{~kg} \mathrm{~m}^{-3}$ and the lifting bag contains $0.700 \mathrm{~m}^{3}$ of air of density $1.27 \mathrm{~kg} \mathrm{~m}^{-3}$ such that the load ascends with a constant speed.

The volume of the load is negligible compared to the volume of the lifting bag.

Fig. 2.1 (not to scale)
(i) Calculate the upthrust on the lifting bag when its volume is $0.700 \mathrm{~m}^{3}$.

Upthrust $=$ Weight of seawater displaced
$=$ density \times volume $\times \mathrm{g}$
$=1050 \times 0.700 \times 9.81$
$=7210.35=7210 \mathrm{~N}$

3 (a)	State the principle of superposition.	
	\qquad \qquad	
		[2]
	Solution: The principle of superposition states that when two or more waves of the same nature meet at a point, the resultant displacement is the vector sum of the individual displacements due to each wave at that point.	

(b) Interference effects are produced on a viewing screen as a result of interference of the direct waves from a 500 nm electromagnetic wave source S and reflected waves from the mirror as shown in Fig. 3.1.
viewing screen

Fig. 3.1 (not to scale)
Points P and Q are at minimum intensity and there is only one point between P and Q which is at a maximum intensity.

S is placed 100 m to the left of the screen and 1.0 cm above the mirror.
(i) Explain why P is at a minimum intensity.
\qquad
\qquad
\qquad

		(Mean) kinetic energy of atoms/molecules is proportional to the (thermodynamic) temperature of the gas. Therefore the change in internal energy is proportional to the change in thermodynamic temperature of the gas.	
	(iii)	A box, filled with an ideal gas, is rapidly accelerated horizontally from rest. Fig. 4.1 Suggest, with a reason, how the internal energy of the gas would vary from the back wall to the front wall of the box during the acceleration.	
			[2]
		Solution: Region of sudden compression at the BACK \rightarrow work done on gas \rightarrow gain energy; Region of sudden expansion at the FRONT \rightarrow work done by gas \rightarrow lose energy (Assuming adiabatic process), the internal energy decreases from back towards the front.	1
(b)	A cy $25^{\circ} \mathrm{C}$ cons	linder of volume $1.8 \times 10^{4} \mathrm{~cm}^{3}$ contains helium gas at pressure $6.4 \times 10^{6} \mathrm{~Pa}$ and tempe . The root-mean-square speed of the helium gas atoms is $336 \mathrm{~m} \mathrm{~s}^{-1}$. Helium gas may sidered to be an ideal monatomic gas.	ature ay be
	(i)	Calculate the number of helium atoms in the cylinder.	
		number =	2]
		Solution: $\begin{aligned} & \mathrm{pV}=\mathrm{NkT} \\ & \left(6.4 \times 10^{6}\right)\left(1.8 \times 10^{4} \times 10^{-6}\right)=\mathrm{N}\left(1.38 \times 10^{-23}\right)(25+273.15) \\ & \mathrm{N}=2.7999 \times 10^{25}=2.8 \times 10^{25} \end{aligned}$ OR	1

5 (a) Twin core cable, consisting of a 'live' wire and a 'neutral' wire, is commonly used for wiring applications. Current is supplied via the 'live' wire from an electrical power source to the appliance. Current then flows via the 'neutral' wire back to the electrical power source.

The twin core cable shown in Fig 5.1 consists of two thin wires whose centres are 5.0 mm apart. Each wire carries a current of 0.25 A .

Permeability of the insulating material, $\mu=1.3 \times 10^{-6} \mathrm{H} \mathrm{m}^{-1}$.

Fig 5.1
(i) State whether the force between the wires is attractive or repulsive.

Solution:

Repulsion

Fig. 5.2

6 A photocell is connected in a series circuit with a variable d.c. power supply and a sensitive ammeter as shown in Fig. 6.1.

The photocell is illuminated with electromagnetic radiation of wavelength 264 nm and power 3.8 mW and photoelectrons are emitted. The potential difference V between the collector C and emitter E in the photocell is adjusted and the photocurrent I is measured. Fig. 6.2 below shows the graph of I against V.

Fig. 6.1

Fig. 6.2
(a) Explain why the photocurrent does not continue to increase for positive values of V.
\qquad
\qquad
\qquad

Solution:

The rate of electron ejection from the emitter arriving at the collector is fixed because it is proportional to the rate of photon incidence which is fixed when electromagnetic radiation is at a fixed intensity and fixed wavelength.

\begin{tabular}{|c|c|c|c|}
\hline (b) \& (i) \& Determine the energy of a photon of the incident electromagnetic radiation. \&

\hline \& (i) \& Determine the energy of a photon of the incident electromagnetic radiation. \&

\hline \& \& energy = J \& [1]

\hline \& \& Solution:
$$
\begin{aligned}
& \text { Energy of a photon }=\frac{h c}{\lambda} \\
& =\frac{6.63 \times 10^{-34}\left(3.00 \times 10^{8}\right)}{\left(264 \times 10^{-9}\right)} \\
& =7.5341 \times 10^{-19} \mathrm{~J} \\
& =7.53 \times 10^{-19} \mathrm{~J}
\end{aligned}
$$ \& 1

\hline \& (ii) \& Calculate the rate at which the photons are incident on the emitter. \& [2]

\hline \& \& $$
\begin{aligned}
& \text { Rate of photon incidence }=\frac{\text { incident power }}{\text { energy of photon }} \\
& =\frac{3.8 \times 10^{-3}}{7.5341 \times 10^{-19}} \\
& =5.0437 \times 10^{15} \mathrm{~s}^{-1} \\
& =5.0 \times 10^{15} \mathrm{~s}^{-1}
\end{aligned}
$$ \& M1

A1

\hline \& \& rate of photon incidence $=\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . \mathrm{s}^{-1}$ \& [2]

\hline \& \& Solution:

$$
\begin{aligned}
& \text { Rate of photon incidence }=\frac{\text { incident power }}{\text { energy of photon }} \\
& =\frac{3.8 \times 10^{-3}}{7.5341 \times 10^{-19}} \\
& =5.0437 \times 10^{15} \mathrm{~s}^{-1} \\
& =5.0 \times 10^{15} \mathrm{~s}^{-1}
\end{aligned}
$$ \&

\hline \& \& \&

\hline
\end{tabular}

(ii) The emitter is replaced with another emitter of half the work function energy. On Fig. 6.2, sketch a graph to show the new variation with V of I.

1 mark: correct graph with a more negative horizontal intercept
1 mark: precision of horizontal intercept (doubled),labelling the new horizontal intercept at -1.0 V

7 A solar cell is a device which converts light energy directly into electrical energy. Under the influence of light, a terminal potential difference (p.d.) is generated across the solar cell. This process is explained as follows.

A solar cell consists of three main layers: an N-type material layer, a Junction layer, and a P-type material layer.

There is an electric field across the Junction layer as shown in Fig. 7.1. When photons are incident on the solar cell, electron-hole pairs are generated in the Junction layer. Holes are positively charged carriers with charge $+e$. The electrons and holes move in opposite directions under the influence of the electric field, which sets up a terminal p.d. across the solar cell.

Fig. 7.1

Electron-hole pairs will be generated in the solar cell provided that the incident photon has an energy greater than a certain value known as the band gap energy of the material used.

The magnitude of the p.d. developed across the terminals of the solar cell depends on the intensity of light incident onto the solar cell.

The variation of the potential difference V across the cell with current I can be investigated using the circuit shown in Fig. 7.2

Fig. 7.2
R is a variable resistor with a maximum resistance of 7.0Ω. The voltmeter has infinite resistance and the resistance of the ammeter is negligible.

Fig 7.3 shows the variation of I with V for a particular cell of surface area $4.0 \times 10^{-4} \mathrm{~m}^{2}$ when illuminated normally with light intensity $1100 \mathrm{~W} \mathrm{~m}^{-2}$.

Fig 7.3
(a) (i) State why a p.d. is set up across the solar cell only for a limited range of frequencies of photons.
\qquad
\qquad

Solution:

Because the electron-hole pairs are created only when the energy of a photon is greater than the band gap energy of the material of the solar cell, and the energy of a photon is proportional to the frequency of the incident light.

1 mark is given to relate the given information (that energy of photon must be greater than the band gap energy of the material) to the knowledge that energy of a photon equals to $h f$.
(ii) Explain why the p.d. across the solar cell increases with the intensity of the incident light.
\qquad
\qquad
\qquad
\qquad
\qquad

Solution:

When intensity is increased at a fixed frequency the number of photons incident per unit time is proportional to the intensity.

Since each electron-hole pair created is the result of absorbing one photon, hence more electron-hole pairs will be created per unit time.
(b) (i) Explain how the graph shows that the e.m.f. of the solar cell is 550 mV .
\qquad
\qquad
\qquad

Solution:

The value corresponds to an open circuit when the current is zero and the terminal p.d. is equal in value to e.m.f.
(ii) Explain why the experiment data needed to be extrapolated to obtain the trend from P to the point when $V=550 \mathrm{mV}$.
\qquad
\qquad
\qquad
\qquad
\qquad

Solution:

At point P
$\mathrm{I}=75 \mathrm{~mA}$
$\mathrm{V}=520 \mathrm{mV}$
The resistance at $\mathrm{P}=520 \mathrm{~V} / 75 \mathrm{~mA}=6.9 \Omega$
From P to the point when $V=550 \mathrm{mV}$, the resistance is larger than 6.9Ω, between 6.9Ω to infinite resistance (as seen from the ratio V / I).
However the variable resistor R only has a maximum resistance of 7.0Ω. Thus experiment data cannot be obtained for this range of values of V .
(c) (i) From Fig. 7.3, determine the power dissipation in the load resistor for point P .

> power dissipation =

W
$\mathrm{I}=75.00 \mathrm{~mA}$
$\mathrm{V}=520 \mathrm{mV}$
$\mathrm{P}=\mathrm{IV}=75 \mathrm{~mA} \times 520 \mathrm{mV}$
$=3.90 \times 10^{-2} \mathrm{~mW}$
(ii) On Fig. 7.3, shade an area that represents the power dissipation calculate in $\mathbf{c}(\mathrm{i})$.

Solution:

(iii) From Fig. 7.3, estimate the maximum power dissipation in the load resistor. Show your working.
maximum power $=$ W

$$
\begin{aligned}
& \text { When } V=460 \mathrm{mV} \text { and } \mathrm{I}=120 \mathrm{~mA} \text {, } \\
& \text { Power }=120 \mathrm{~mA} \times 460 \mathrm{mV}=55.2 \mathrm{~mW} \\
& \text { When } V=470 \mathrm{mV} \text { and } I=117.5 \mathrm{~mA}, \\
& \text { Power }=55.225 \mathrm{~mW} \\
& \text { When } V=480 \mathrm{mV} \text { and } \mathrm{I}=110 \mathrm{~mA}, \\
& \text { Power }=52.8 \mathrm{~mW}
\end{aligned}
$$

Hence Maximum Power $\approx 55 \mathrm{~mW}$
Accept range of Power 55 mW to 60 mW
(iv) On Fig. 7.4 sketch the graph of power output P_{0}, of the cell against V. Label and include a suitable scale on the vertical axis.

Fig. 7.4

Solution:

Po/mW

P_{0} increases and decreases
$P_{0}=0$ at $V=0$, and V is max at 550 mV , and $P_{0}=55 \mathrm{~mW}$ at $V=470 \mathrm{mV}$
(estimated from area of 'rectangle' under the I-V graph)
P_{0} increases almost linearly for $\mathrm{V}<200 \mathrm{mV}$
(because $\mathrm{P}_{\mathrm{o}}=\mathrm{IV}$, so when I is approximately constant, P_{o} is approximately proportional to $\mathrm{V} \rightarrow$ linear variation)
(d) Calculate the maximum efficiency of conversion of light energy into electrical energy.
maximum efficiency $=$
From (c)(iii), Maximum power output $=55 \mathrm{~mW}$
Power input (from incident light energy) $=$ intensity x area $=1100 \times 4 \times 10^{-4}=440 \mathrm{~mW}$
efficiency $=55 / 440=0.125$ or 12.5%
(e) A number of solar cells are connected to a load resistor L as shown in Fig. 7.5.

Fig. 7.5
The resistance of L has been adjusted so that each cell gives the maximum power estimated in (c)(iii).

Calculate
(i) the potential difference across L ,

Solution:

$\mathrm{V}=3 \times 470 \mathrm{mV}=1.41 \mathrm{~V}$
(ii) the current through L .
current $=$ \qquad .A

Solution:

$\mathrm{I}=2 \times 117.5 \mathrm{~mA}=0.235 \mathrm{~A}$
(f) Suppose each cell is operating at maximum power estimated in (c)(iii). Draw a suitable network of cells so that the cells may be used to provide an output power of approximately 5 kW at 30 V .

Solution:

A network of cells in series and parallel connections

1 Mark - Correct number of cells in series
1 Mark - Correct number of cells in parallel
1 Mark - Diagram - Label the number of cells in series per branch and number of branches (Circuit symbol in branches not required)

At max power, each cell has a p.d. of 47 mV and current of 117.5 mA

Number of cells in series $=30 / 0.470=63.8=64$ cells Number of cells required $=5 \mathrm{~kW} / 55 \mathrm{~mW}=90900$ cells Number of parallel circuits $=90900 / 64=1400$
-- END OF PAPER 2 --

Catholic Junior College

JC2 Preliminary Examinations
Higher 2

CANDIDATE
NAME
MARK SCHEME

CLASS \square

PHYSICS

9749/03
Paper 3: Longer Structured Questions

Candidates answer on the Question Paper.
No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your name and class on all the work you hand in.
Write in dark blue or black pen in the space provided. [PILOT FRIXION ERASABLE PENS ARE NOT ALLOWED] You may use a soft pencil for any diagrams, graphs or rough working.
Do not use staples, paper clips, highlighters, glue or correction fluid.
Section A: Answer all questions.
Section B: Answer one question only. Circle the question number attempted in Section B.
You are advised to spend one and a half hours on Section A and half an hour on Section B.

FOR EXAMINER'S USE		DIFFICULTY		
		L1	L2	L3
Section A				
Q1	18			
Q2	17			
Q3	/ 10			
Q4	/11			
Q5	/ 12			
Q6	15			
Q7	17			
Section B				
Q8	120			
Q9	120			
Paper 3	180			
Paper 2	180			
Paper 1	130			
TOTAL FOR THEORY	/ 190			

This document consists of $\mathbf{3 6}$ printed pages and zero blank page.

Physics Data:

speed of light in free space

$$
\begin{aligned}
c & =3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \\
\mu_{0} & =4 \pi \times 10^{-7} \mathrm{H} \mathrm{~m}^{-1} \\
\varepsilon_{0} & =8.85 \times 10^{-12} \mathrm{~F} \mathrm{~m}^{-1} \\
& =(1 /(36 \pi)) \times 10^{-9} \mathrm{~F} \mathrm{~m}^{-1} \\
e & =1.60 \times 10^{-19} \mathrm{C} \\
h & =6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s} \\
u & =1.66 \times 10^{-27} \mathrm{~kg} \\
m_{e} & =9.11 \times 10^{-31} \mathrm{~kg} \\
m_{P} & =1.67 \times 10^{-27} \mathrm{~kg} \\
R & =8.31 \times \mathrm{J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
N_{A} & =6.02 \times 10^{23} \mathrm{~mol}^{-1} \\
k & =1.38 \times 10^{-23} \mathrm{~mol}^{-1} \\
G & =6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2} \\
g & =9.81 \mathrm{~m} \mathrm{~s}^{-2}
\end{aligned}
$$

elementary charge the Planck constant unified atomic mass constant rest mass of electron rest mass of proton molar gas constant the Avogadro constant the Boltzmann constant gravitational constant acceleration of free fall

Physics Formulae:

uniformly accelerated motion
work done on / by a gas
hydrostatic pressure
gravitational potential
Temperature
pressure of an ideal gas
mean translational kinetic energy of an ideal gas molecule
displacement of particle in s.h.m.
velocity of particle in s.h.m.
electric current
resistors in series
resistors in parallel
electric potential
alternating current / voltage
magnetic flux density due to a long straight wire
magnetic flux density due to a flat circular coil
magnetic flux density due to a long solenoid
radioactive decay
decay constant

Section A

Answer all the questions in the spaces provided.
1 Fig. 1.1 shows block A of mass 1.5 kg held against a spring with a force F. The spring is compressed by 2.0 cm .

Fig. 1.1
The force F is then removed and the block A accelerates to the right before losing contact with the spring with a speed of $0.50 \mathrm{~m} \mathrm{~s}^{-1}$ as shown in Fig. 1.2. Block A collides elastically head-on with block B. The mass of block B is 0.50 kg .

Fig. 1.2
Air resistance and frictional forces are negligible.
(a) Determine the speed of block B after the collision with block A .
final speed of block B = \qquad $\mathrm{m} \mathrm{s}^{-1}$

Solution:

Take vectors to the right as positive.
By Conservation of Momentum,

$$
m_{A} u+0=m_{A} v_{1}+m_{B} v_{2}
$$

$1.5(0.50)=(1.5) v_{1}+(0.50) v_{2} \quad$ (1)
$0.75=1.5 v_{1}+0.50 v_{2}$
For head-on, elastic collision,
Relative speed of approach = Relative speed of separation
$u-0=v_{2}-v_{1}$
$0.5=v_{2}-v_{1}$
$v_{1}=v_{2}-0.5$
Sub (2) into (1)
$0.75=1.5\left(v_{2}-0.5\right)+0.50 v_{2}$
$v_{2}=0.75 \mathrm{~m} \mathrm{~s}^{-1}$
(b) Fig 1.3 shows the variation with time of the force acting on block A during the collision with block B .

Fig. 1.3
(i) Sketch on Fig. 1.3, the corresponding graph to show how the force on block B varies with time during the collision between block A and block B.

Solution:

Marking points:

- Equal in magnitude and opposite in direction at every instant in time

	(ii)	Explain how your graph shows that the total momentum of the blocks remains unchanged during the collision.	
			[
		Solution: Area under the force-time graph represents the change in momentum of a body. The area under the graphs of A and B are equal in magnitude but opposite in direction. This implies that the change in momentum of one block is equal and opposite to the change in momentum of the other so that total momentum is conserved.	1 1 1
(c)	Block B hits the wall elastically, rebounds and collides with block A. Block A then moves and compresses the spring. State, with a reason, whether the maximum compression of the spring will be greater than, less than, or equal to 2.0 cm .		
			[2]
	Solution: Even though total kinetic energy is conserved, the kinetic energy of A is now less than initially as some of its kinetic energy has been transferred to B. By conservation of energy, energy transferred to the spring will therefore be less and the compression of the spring will be less than 2.0 cm .		1

2 A block of mass $2 m$ initially rests on a track at the bottom of the circular, vertical loop of radius r as shown in Fig. 2.1. A bullet of mass m strikes the block horizontally and remains embedded in the block as the block and bullet circle the loop. Assume frictional force of the loop is negligible.

Fig. 2.1
(a) (i) Show that the minimum speed of the block at the top of the loop such that it just completes the vertical circular motion without falling off the loop is given by $\sqrt{g r}$
where g is the acceleration due to gravity.

Solution:

At the Top of the loop,
the vector sum of the Weight of the block (with bullet embedded) [3mg] and the Normal contacf force [N] exerted by the loop on the block provide for the Centripetal force required $\left[\frac{(3 m) v^{2}}{r}\right]$.

Thus,

$$
3 m g+N=\frac{(3 m) v^{2}}{r}
$$

where v is the speed at the top
$N=\frac{(3 m) v^{2}}{r}-3 m g$
For the block to JUST complete the vertical circular motion without falling off the loop at the Top, $N \geq 0$.
$\Rightarrow \frac{(3 m) v^{2}}{r}-3 m g \geq 0$
$\Longrightarrow \quad v \geq \sqrt{r g}$
Minimum velocity at the top of the loop, $v_{\text {min,top }}=\sqrt{r g}$
(ii) Derive an expression for the minimum speed of the bullet in order for the block to just complete the vertical circular motion without falling off the loop. Explain your working.
Solution:
Since the track is frictionless, the loss in the kinetic energy of the block and bullet is converted into their gain in gravitational potential energy.

Therefore,

$$
\begin{aligned}
& \frac{1}{2}(3 m) v_{\text {min,top }}{ }^{2}-\frac{1}{2}(3 m) v_{\text {bottom }^{2}=(3 m) g(2 r)} \\
& \frac{1}{2}(3 m)(\sqrt{r g})^{2}-\frac{1}{2}(3 m) v_{\text {bottom }^{2}}{ }^{2}=(3 m) g(2 r) \\
& v_{\text {bottom }}=\sqrt{5 r g}
\end{aligned}
$$

where $v_{\text {bottom }}$ is the speed at the bottom of the loop
Applying principle of conservation of linear momentum, taking vectors to the right as positive,

Total initial momentum of bullet $=$ Total momentum of block with embedded bullet JUST AFTER the collision

$$
\begin{aligned}
& m v_{\text {bullet }}=3 m \sqrt{5 \mathrm{rg}} \\
& v_{\text {bullet }}=3 \sqrt{5 \mathrm{rg}}
\end{aligned}
$$

3 (a) A ball is held between two fixed points A and B by means of two stretched springs as shown in Fig. 3.1.

Fig. 3.1
The ball is free to oscillate horizontally on the smooth horizontal table. The variation of the acceleration a of the ball with its displacement x from its equilibrium position is shown in Fig. 3.2.

Fig. 3.2
(i) State and explain the features of Fig. 3.2 which indicate that the moving ball is exhibiting simple harmonic motion.
\qquad
\qquad
\qquad

Solution:

The graph is a straight line that passes through the origin, this indicates that the acceleration is directly proportional to the displacement from the equilibrium position.

The gradient of the graph is negative, which indicate that the acceleration and the displacement are always in opposite directions (or the acceleration is always directed to a fixed equilibrium position).
(ii) On Fig. 3.3, sketch the variation of the velocity v of the ball with x. Include the values of the horizontal and vertical intercepts of the graph.

Fig. 3.3

Solution:

Mark scheme:

- Shape of graph [ellipse]
- From Fig. 3.2, $x_{0}=2.50 \mathrm{~cm}=0.0250 \mathrm{~m}$
\rightarrow Labelled horizontal intercepts at $\pm 2.50 \mathrm{~cm}$
- From Fig. 3.2, $\mathrm{a}_{\mathrm{o}}=12.5 \mathrm{~m} \mathrm{~s}^{-2}, \mathrm{a}_{\mathrm{o}}=\omega^{2} \mathrm{x}_{\mathrm{o}} \rightarrow \omega^{2}=12.5 / 0.0250=500 \mathrm{~s}^{-2}$,
- $\mathrm{v}_{\mathrm{o}}=\mathrm{x}_{\mathrm{o}} \boldsymbol{\omega}=0.559 \mathrm{~m} \mathrm{~s}^{-1}$
\rightarrow Labelled vertical intercepts at $\pm 0.559 \mathrm{~m} \mathrm{~s}^{-1}$
(b) The ball is attached to the apparatus illustrated in Fig. 3.4 in order to investigate its vertical oscillations on a spring. The amplitude of the vibrations produced by the oscillator is constant.

Fig. 3.4
The variation of the amplitude of the oscillations of the ball with the frequency f of the oscillator is shown in Fig. 3.5. The oscillations are assumed to be simple harmonic.

Fig. 3.5
(i) State the natural frequency of the oscillations.
natural frequency $=$ Hz

Solution:

3.5 Hz
(ii) Explain why Fig. 3.5 shows that the oscillations are damped.
\qquad
\qquad
\qquad

Solution:

The graph of Fig. 3.5 shows that the resonance occurs at 3.5 Hz with a finite amplitude showing the system is damped. (Without damping the resonance amplitude would be infinite.)
(iii) On Fig. 3.5, sketch a possible variation of the amplitude of the oscillations of the ball with f if the oscillations are damped with a greater resistive force.

Fig. 3.5

(iii) On Fig. 4.1, sketch a graph to show the variation with diffraction angle θ from the central maximum of the intensity I of the light on the viewing screen. Include the angles for the first minima.

Fig. 4.1

1 mark:
Smooth diffraction pattern curve, with 2 maxima on either side. 5 maxima in total when central maxima is included. Show to $3^{\text {rd }}$ minima [3 maxima are insufficient to show a 'trend'!]

1 mark:
Exact values of intensity axis labelling with values are not required, however the value for the $1^{\text {st }}$ minima should be included.

1 mark:

Since the minimum angle for the radio telescope is much larger than that of the Keck telescope, it indicates that the Keck telescope is able to observe objects as separate images even though the objects are much closer to each other, whereas the radio telescope would not be able to pick up the distinction of the objects due to its larger limiting angle.

Thus, the Keck telescope has a higher resolving power.

5 (a) Define potential difference between two points in a circuit.
\qquad
\qquad
\qquad

Solution:

It is the amount of electrical energy converted to other forms of energy per unit charge flowing between those two points in a circuit.
(b) A thermistor and a variable resistor are connected in a potential divider circuit as shown in Fig. 5.1.

The battery has an e.m.f. of E, the thermistor has a resistance R_{T} and the variable resistor has a resistance R_{v}.

This circuit is used to activate an alarm system whenever the ambient temperature rises to a certain value. The alarm bell will sound if the potential difference across it increases beyond the pre-set value.

Fig. 5.1

(c) Fig. 5.2 shows a potentiometer circuit consisting of a 100 cm length of wire $A B$ and a driver cell E_{1} of e.m.f 2.0 V and of negligible internal resistance.

Fig. 5.2
(i) State the value of the potential gradient along $A B$.
potential gradient $=$ \qquad $\mathrm{V} \mathrm{cm}^{-1}$
Solution:
Potential gradient $=2.0 / 100=0.020 \mathrm{~V} \mathrm{~cm}^{-1}$
(ii) A circuit consisting of a cell E_{2} and a variable resistor R is now connected to the potentiometer as shown in Fig. 5.3.

Fig. 5.3
(d) The resistance of R is set to 10.0Ω and the sliding contact C is adjusted until there is no current flowing in the galvanometer. The length $A C$ is found to be 60.0 cm .

The resistance of R is now set to 3.0Ω and the experiment is repeated. The length $A C$ is now 54.0 cm .

Calculate the e.m.f. and internal resistance r of cell E_{2}.

$$
\text { e.m.f. of cell } E_{2}=\text {...........................V }
$$

internal resistance of cell $\mathrm{E}_{2}=$

Solution:

p.d. across $A B=$ e.m.f. of $E_{1}=2.0 \mathrm{~V}$

When resistance of $R=10.0$, balance length $=60.0 \mathrm{~cm}$
p.d. across $A C=$ potential gradient $\times 60.0=0.020 \times 60.0=1.2 \mathrm{~V}$
p.d. across $R=E_{2} \times 10.0 /(10.0+r)$

At balance length, p.d. across $R=$ p.d. across $A C$
$E_{2} \times 10.0 /(10.0+r)=1.2$
When resistance of $R=3.0$, balance length $=54.0 \mathrm{~cm}$
p.d. across $A C=$ potential gradient $\times 54.0=0.020 \times 54.0=1.08 \mathrm{~V}$
p.d. across $R=E_{2} \times 3.0 /(3.0+r)$

At balance length, p.d. across $R=$ p.d. across $A C$
$E_{2} \times 3.0 /(3.0+r)=1.08$
(1) / (2)
$(10.0 / 3.0) \times[(3.0+r) /(10.0+r)]=1.2 / 1.08$
$r=0.5 \Omega$
subtitute $r=$ into (1)
$\mathrm{E}_{2}=1.26 \mathrm{~V}$

6 (a) A coil with 500 turns is placed in a uniform magnetic field of flux density $5.0 \times 10^{-2} \mathrm{~T}$. The area of the coil perpendicular to the field is $2.5 \times 10^{-2} \mathrm{~m}^{2}$, as shown in Fig. 6.1.

Fig. 6.1
Calculate the magnetic flux linkage of the coil. Give an appropriate unit.
\qquad unit:

Solution:

$\Phi=N B A \cos \theta=(500)\left(5.0 \times 10^{-2}\right)\left(2.5 \times 10^{-2}\right) \cos 0^{\circ}$
$=0.625=0.63 \mathrm{~Wb}$
where θ : angle between the normal to the plane of the coil and the magnetic field.
OR
$\Phi=N B A \sin \alpha=(500)\left(5.0 \times 10^{-2}\right)\left(2.5 \times 10^{-2}\right) \sin 90^{\circ}$
$=0.625=0.63 \mathrm{~Wb}$
where α : angle between the plane of the coil and the magnetic field.
1 mark for both correct answer \& units.
(b) The coil in (a) is rotated at a constant angular velocity about the axis in Fig. 6.1. The flux linkage Φ of the coil varies with time t, as shown in Fig. 6.2.

Fig. 6.2
(i) Calculate the maximum induced electromotive force (e.m.f.).
maximum induced e.m.f. = V

Solution:

From graph,
$\Phi=\Phi_{0} \cos (\omega t)$
$E=-d \Phi / d t=-\omega \Phi_{0} \sin (\omega t)=-(2 \pi / T) \Phi_{0} \sin (2 \pi / T) t$
$=-\left(\frac{2 \pi}{1.0 \times 10^{-3}}\right)(0.625) \sin \left[\left(\frac{2 \pi}{1.0 \times 10^{-3}}\right) t\right]$
Hence Maximum induced e.m.f.,
$\mathrm{E}_{\mathrm{o}}=\omega \Phi_{\mathrm{o}}=\left(\frac{2 \pi}{1.0 \times 10^{-3}}\right)(0.625)$
$=3927.0=3900 \mathrm{~V}$ (2 s.f.)

7 Fig. 7.1 shows some of the energy levels of an helium atom.
$n=5$

$n=4$$\square$| -2.18 |
| :--- |
| -3.40 | energy in eV

$n=3 \longrightarrow-6.04$
$\mathrm{n}=2 \longrightarrow-13.6$
$\mathrm{n}=1$

Fig. 7.1
An electron with kinetic energy of 50.0 eV collides with a helium atom in its ground state and the helium atom is excited.
(a) (i) In Fig. 7.1, use arrows to show the possible energy transitions when the excited helium atom de-excites.
Solution:
Highest possible level that the electron can excite to is $-6.04 \mathrm{eV}, \mathrm{n}=3$

2 marks - all 3 transitions
1 mark - any 2 transitions
0 mark - 0 or 1 transition
(ii) Calculate the shortest wavelength of the radiation that is emitted from the transitions in (a)(i).

Solution:
Loss of electron excitation energy $\Delta \mathrm{E}=$ Energy of emitted photon $\mathrm{E}_{\text {photon }}$

$$
\Delta \mathrm{E}=\frac{h c}{\lambda}
$$

Largest $\Delta \mathrm{E}$ (i.e. from $\mathrm{n}=3$ to $\mathrm{n}=1$) produces photon of shortest wavelength λ.

$$
\begin{gathered}
{[-6.04-(-54.4)]\left(1.6 \times 10^{-19}\right)=\frac{\left(6.63 \times 10^{-34}\right)\left(3.0 \times 10^{8}\right)}{\lambda}} \\
\lambda=2.57 \times 10^{-8} \mathrm{~m}
\end{gathered}
$$

shortest wavelength =

(b) When a beam of white light is passed through a cold helium gas, an absorption spectrum of coloured background with dark lines is observed.

Use Fig. 7.1 to explain quantitatively why one of the dark lines correspond to a wavelength of 471 nm .
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Solution:

Photon of wavelength 471 nm has energy of $\frac{\left(6.63 \times 10^{-34}\right)\left(3.00 \times 10^{8}\right)}{471 \times 10^{-9}}=2.64 \mathrm{eV}$
Electrons absorb photons of energy 2.64 eV to make a transition from $n=3$ to $n=4$.
On de-excitation, photons of energy 2.64 eV , i.e. wavelength 471 nm are emitted.
But photons emitted are in all directions, not just along the initial direction, hence dark line is observed as compared to other regions whose wavelengths are not absorbed.

Section B

Answer one question from this Section in the spaces provided.

8 (a) Two ions S and T, each of negative charge $-q$, are held stationary at a distance of 2.0 cm from each other as shown in Fig. 8.1. P_{1} is the midpoint between S and T .

Fig. 8.1
State what it means by
(i) the electric field strength at P_{1},
\qquad
\qquad
\qquad
\qquad

Solution:

It is the electric force per unit positive charge acting on a stationary test charge placed at P_{1} due to the charges placed at S and T.
(ii) the electric potential at P_{1}.
\qquad
\qquad
\qquad

Solution:

It is the work done per unit positive charge by an external agent in moving a point charge from infinity to P_{1}.
(b) The value of q is known to be $1.6 \times 10^{-19} \mathrm{C}$. A third ion R of positive charge $+q$ is introduced into the system at a distance of 4.0 cm from ions S and T as shown in Fig. 8.2. All three ions are held stationary.
P_{2} is the midpoint between R and T.

Fig. 8.2
(i) Calculate the amount of work done required to assemble R .
work done = \qquad J
Solution:
work done by external agent
$=q_{R} V_{R, \text { net }}$
$=q_{R}\left(V_{R T}+V_{R S}\right)$
$=q_{R}\left(\frac{q_{S}}{4 \pi \varepsilon_{0} r_{R S}}+\frac{q_{S}}{4 \pi \varepsilon_{0} r_{R T}}\right)$
$=\frac{q_{R}}{4 \pi \varepsilon_{0} r_{R T}}\left(q_{S}+q_{T}\right) \quad$ since $r_{R S}=r_{R T}$
$=\frac{+q}{4 \pi \varepsilon_{0} r_{\mathrm{RT}}}((-q)+(-q))$
$=\frac{\left(1.6 \times 10^{-19}\right)^{2}}{4 \pi\left(8.85 \times 10^{-12}\right)\left(4.0 \times 10^{-2}\right)}(-2)$
$=-1.2 \times 10^{-26} \mathrm{~J}$
(ii) Without calculations, explain whether the work done required is more or less if R was placed at P_{2} instead.
\qquad
\qquad
\qquad

Solution:

The resultant electric potential due to S and T at point P_{2} is more negative than at R 's original position.

Therefore an external agent needs to do more work in moving R from infinity to P_{2}.
(iii) With reference to the direction of the electric field strength along RP_{1}, describe the variation of electric potential along the line joining ion R to the point P_{1}.
\qquad
\qquad
\qquad

Solution:

The resultant field strength is directed downwards everywhere along the line joining R and P_{1} and potential decreases in the direction of the field strength. ($\mathrm{E}=-\mathrm{dV} / \mathrm{dr}$)

The resultant potential along the line joining R and P_{1} decreases.
(c) (i) Show that the magnitude of the electric field strength that R experiences for the ion assembly in Fig. 8.2 is given by $1.74 \times 10^{-6} \mathrm{NC}^{-1}$.
Solution:
$E_{R T}=\frac{q_{T}}{4 \pi \varepsilon_{0} r_{R T}{ }^{2}}$
$E_{R S}=\frac{q_{S}}{4 \pi \varepsilon_{0} r_{R S}{ }^{2}}$
$E=E_{R S} \cos \theta_{\text {SRP }_{1}}+E_{R T} \cos \theta_{T R P P_{1}}$
$=\frac{q_{S}}{4 \pi \varepsilon_{0} r_{R S}{ }^{2}} \cos \theta_{\mathrm{SRP}_{1}}+\frac{q_{T}}{4 \pi \varepsilon_{0} r_{R T}{ }^{2}} \cos \theta_{T R P_{1}}$

Since RST is an isosceles triangle,

$$
\begin{aligned}
r_{S R}=r_{R T} & \text { and } \cos \theta_{\mathrm{SRP}_{1}}=\cos \theta_{T R P_{1}} \\
& \cos \theta_{T R P_{1}}=\frac{r_{R P_{1}}}{r_{R T}} \\
& =\frac{\sqrt{r_{R T^{2}-r_{P_{1} T^{2}}}}}{r_{R T}} \\
& =\frac{\sqrt{4^{2}-1^{2}}}{4} \\
& =\frac{\sqrt{15}}{4}
\end{aligned}
$$

$$
E=\frac{q_{S}}{4 \pi \varepsilon_{0} r_{R S}{ }^{2}} \cos \theta_{S R P_{1}}+\frac{q_{T}}{4 \pi \varepsilon_{0} r_{R T^{2}}} \cos \theta_{T R P_{1}}
$$

$$
=2 \frac{q}{4 \pi \varepsilon_{0} r_{R T} T^{2}} \cos \theta_{T R P_{1}}
$$

$$
=2 \frac{q}{4 \pi \varepsilon_{0}\left(4.0 \times 10^{-2}\right)^{2}}\left(\frac{\sqrt{15}}{4}\right)
$$

$$
=303 \frac{q}{\pi \varepsilon_{0}}
$$

$$
=303 \frac{1.6 \times 10^{-19}}{\pi\left(8.85 \times 10^{-12}\right)}
$$

$$
=1.74 \times 10^{-6} \mathrm{NC}^{-1}
$$

| (ii) | R is subsequently released.
 Hence, calculate |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Solution:

- R will always experience a net force towards line joining S and T
- Therefore R will oscillate to and fro about the line joining S and T.
(1 mark) R will slow down because it experiences a force upwards.

OR
When R is released, it will accelerate towards P_{1}. Since all charges radiate when they accelerate, R will emit photons during its motion.

Due to the conservation of momenta of R and the emitted photon, R will deviate from a straight path during photon emission.

9 (a) Distinguish between gravitational field strength and acceleration of free fall.
\qquad
\qquad
\qquad

Solution:

Gravitational field strength is the gravitational force per unit mass acting on a small mass at a point in a gravitational field.

While acceleration of free fall is the change in velocity per unit time (i.e. acceleration) produced by gravitational force alone acting on a mass.
(b) Assuming Earth to be a sphere, explain with the help of free body diagrams, the difference in the weight of a person measured on an electronic balance at the poles and at the equator.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Free Body diagrams with forces identified, and length of vectors at poles are equal, while at the equator F_{g} vector is longer than N vector.

N: Normal contact force exerted by electronic scale on person
Fg: Gravitational force exerted by Earth on person
1 mark for FBDs awarded if the following are shown:

- Forces are identified and named
- At Poles : correct N and F_{g} (length and direction)(N and F_{g} vectors are equal in length)
- At Equator : correct N and F_{g} (length and direction) $\left(F_{g}\right.$ vector is longer than N vector)

Electronic balance reads the apparent weight of the person which is given by the magnitude of N .

At a pole, person does not undergo circular motion, hence centripetal force F_{c} equals zero. Thus N equals in magnitude to Fg_{g}.

At the equator, person undergoes circular motion, hence F_{c} is non-zero. Thus N is less than Fg .

Since the Earth is assumed to be a perfect sphere, its radius at the poles and equator are equal, hence F_{g} at both locations are equal. This implies that N at the poles is greater than N at the equator, and hence the apparent weight of the person is lesser at the equator.
(c) Assuming Earth to be a sphere of radius $6.4 \times 10^{6} \mathrm{~m}$, calculate the mass of Earth.

Solution:

$\mathrm{g}=\mathrm{GM} / \mathrm{r}^{2}$
$g_{\text {at Earth's surface }}=G M_{E} / r_{E}{ }^{2}$
$M_{E}=g_{\text {at Earth's surface }} \mathrm{re}^{2} / G$
$M_{E}=9.81\left(6.4 \times 10^{6}\right)^{2} / 6.67 \times 10^{-11}=6.02425 \times 10^{24}=6.0 \times 10^{24} \mathrm{~kg}$
(d) Calculate the radius of the orbit of a geostationary satellite.

Solution:

Gravitational force $\left(\mathrm{F}_{\mathrm{g}}\right)$ exerted by Earth on satellite provides for the centripetal force $\left(\mathrm{F}_{\mathrm{c}}\right)$ required for the satellite's circular motion.
$\mathrm{F}_{\mathrm{g}}=\mathrm{F}_{\mathrm{c}}$
$\frac{G M m}{r^{2}}=m r \omega^{2} \quad$ where m: mass of satellite
$\frac{G M m}{r^{2}}=m r\left(\frac{2 \pi}{T}\right)^{2}$
$T^{2}=\frac{4 \pi^{2} r^{3}}{G M}$
For geostationary orbit, $\mathrm{T}=24 \mathrm{~h}$
From (c), $M=6.02425 \times 10^{24} \mathrm{~kg}$
$(24 \times 60 \times 60)^{2}=\frac{4 \pi^{2} r^{3}}{\left(6.67 \times 10^{-11}\right)\left(6.02425 \times 10^{24}\right)}$
$r=4.2 \times 10^{7} \mathrm{~m}$

(ii) On Fig. 9.1, sketch the variation of gravitational potential ϕ between the surface of Earth and the surface of the moon.

Include the value obtained in (e)(i).

Fig. 9.1

Solution:

Fig. 9.1

- Maximum point at null point with position labelled
- Potential at Earth's surface is more negative than potential at Moon's surface AND asymmetric curve of appropriate shape

