1 Express $\frac{12}{x+1}-(7-x)$ as a single simplified fraction.
Without using a calculator, solve $\frac{12}{x+1} \leq 7-x$.

2 (i) Find $\frac{\mathrm{d}}{\mathrm{d} x} \tan ^{-1}\left(x^{2}\right)$.
(ii) Hence, or otherwise, evaluate $\int_{0}^{1} x \tan ^{-1}\left(x^{2}\right) \mathrm{d} x$ exactly.

3 (i) Find $\frac{\mathrm{d}}{\mathrm{d} x}\left(3 x^{2} 2^{x}\right)$.
(ii) Find the equation of the tangent to the curve $y=3 x^{2} 2^{x}$ at the point where $x=1$, giving your answer in exact form.

4 The graph for $y=\mathrm{f}(x)$ is given below, where $y=10-x, y=6$ and $x=4$ are asymptotes. The turning points are $(-3,5)$ and $(6,0)$, and the graph intersects the y-axis at $(0,6)$.

On separate diagrams, sketch the graphs of
(i) $y=\mathrm{f}(|x|)$,
(ii) $y=\frac{1}{\mathrm{f}(x)}$.

5 Referred to the origin O, points P and Q have position vectors $3 \mathbf{a}$ and $\mathbf{a}+\mathbf{b}$ respectively. Point M is a point on $Q P$ extended such that $P M: Q M$ is $2: 3$.
(i) Find the position vector of point M in terms of \mathbf{a} and \mathbf{b}.
(ii) Find $\overrightarrow{P Q} \times \overrightarrow{O M}$ in terms of \mathbf{a} and \mathbf{b}.
(iii) State the geometrical meaning of $\frac{|\overrightarrow{P Q} \times \overrightarrow{O M}|}{|\overrightarrow{P Q}|}$.

6 A curve C has equation $y=\mathrm{f}(x)$, where the function f is defined by

$$
\mathrm{f}: x \mapsto \frac{12-3 x}{x^{2}+4 x-5}, \quad x \in \mathbb{R}, x \neq-5, x \neq 1
$$

(i) Find algebraically the range of f.
(ii) Sketch C, indicating all essential features.
(iii) Describe a pair of transformations which transforms the graph of C on to the graph of

$$
\begin{equation*}
y=\frac{9-x}{x^{2}-6 x} \tag{2}
\end{equation*}
$$

7 Given that $\sin ^{-1} y=\ln (1+x)$, where $0<x<1$, show that $(1+x) \frac{\mathrm{d} y}{\mathrm{~d} x}=\sqrt{1-y^{2}}$.
(i) By further differentiation, find the Maclaurin expansion of y in ascending powers of x, up to and including the term in x^{2}.
(ii) Use your expansion from (i) and integration to find an approximate expression for

$$
\begin{equation*}
\int \frac{\sin (\ln (1+x))}{x} \mathrm{~d} x . \text { Hence find an approximate value for } \int_{0}^{0.5} \frac{\sin (\ln (1+x))}{x} \mathrm{~d} x \tag{3}
\end{equation*}
$$

8
(a) A sequence of numbers $a_{1}, a_{2}, a_{3}, \ldots, a_{64}$ is such that $a_{n+1}=a_{n}+d$, where $1 \leq n \leq 63$ and d is a constant. The 64 numbers fill the 64 squares in the 8×8 grid in such a way that a_{1} to a_{8} fills the first row of boxes from left to right in that order. Similarly, a_{9} to a_{16} fills the second row of boxes from left to right in that order.

Given that the sums of the numbers in the first row and in the third column are 58 and 376 respectively, find the values of a_{1} and d.
(b) A geometric series has first term a and common ratio r, where a and r are non-zero. The sum to infinity of the series is 2 . The sum of the six terms of this series from the $4^{\text {th }}$ term to the $9^{\text {th }}$ term is $-\frac{63}{256}$. Show that $512 r^{9}-512 r^{3}-63=0$.
Find the two possible values of r, justifying the choice of your answers.

9 One of the roots of the equation $z^{3}-a z-66=0$, where a is real, is w.
(i) Given that $w=b-\sqrt{ } 2 \mathrm{i}$, where b is real, find the exact values of a and $\frac{w}{w^{*}}$.
(ii) Given instead that $w=r \mathrm{e}^{\mathrm{i} \theta}$, where $r>0,-\pi<\theta<-\frac{3 \pi}{4}$, find $\left|a w^{2}+66 w\right|$ and $\arg \left(a w^{2}+66 w\right)$ in terms of r and θ.

10 The point M has position vector relative to the origin O, given by $6 \mathbf{i}-5 \mathbf{j}+11 \mathbf{k}$. The line l_{1} has equation $x-7=\frac{y}{3}=\frac{z+2}{-2}$, and the plane π has equation $4 x-2 y-z=30$.
(i) Show that l_{1} lies in π.
(ii) Find a cartesian equation of the plane containing l_{1} and M.

The point N is the foot of perpendicular from M to l_{1}. The line l_{2} is the line passing through M and N.
(iii) Find the position vector of N and the area of triangle $O M N$.
(iv) Find the acute angle between l_{2} and π, giving your answer correct to the nearest 0.1°.

11 [It is given that the volume of a cylinder with base radius r and height h is $\pi r^{2} h$ and the volume of a cone with the same base radius and height is a third of a cylinder.]

A manufacturer makes double-ended coloured pencils that allow users to have two different colours in one pencil. The manufacturer determines that the shape of each coloured pencil is formed by rotating a trapezium $P Q R S$ completely about the x-axis, such that it is a solid made up of a cylinder and two cones. The volume, $V \mathrm{~cm}^{3}$, of the coloured pencil should be as large as possible.

It is given that the points P, Q, R and S lie on the curve $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where a and b are positive constants. The points R and S are $(-a, 0)$ and $(a, 0)$ respectively, and the line $P Q$ is parallel to the x-axis.
(i) Verify that $P(a \cos \theta, b \sin \theta)$, where $0<\theta<\frac{\pi}{2}$, lies on the curve $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. Write down the coordinates of the point Q.
(ii) Show that V can be expressed as $V=k \pi \sin ^{2} \theta(2 \cos \theta+1)$, where k is a constant in terms of a and b.
(iii) Given that $\theta=\theta_{1}$ is the value of θ which gives the maximum value of V, show that θ_{1} satisfies the equation $3 \cos ^{2} \theta+\cos \theta-1=0$. Hence, find the value of θ_{1}.

At $\theta=\frac{\pi}{6}$, the manufacturer wants to change one end of the coloured pencil to a rounded-end eraser. The eraser is formed by rotating the arc $P S$ completely about the x-axis.
(iv) Find the volume of the eraser in terms of a and b.

12 A ball-bearing is dropped from a point O and falls vertically through the atmosphere. Its speed at O is zero, and t seconds later, its velocity is $v \mathrm{~ms}^{-1}$ and its displacement from O is $x \mathrm{~m}$. The rate of change of v with respect to t is given by $10-0.001 v^{2}$.
(i) Show that $v=100\left(\frac{\mathrm{e}^{\frac{t}{5}}-1}{\mathrm{e}^{\frac{t}{5}}+1}\right)$.
(ii) Find the value of v_{0}, where v_{0} is the value approached by v for large values of t.
(iii) By using chain rule, form an equation relating $\frac{\mathrm{d} x}{\mathrm{~d} t}, \frac{\mathrm{~d} v}{\mathrm{~d} t}$ and $\frac{\mathrm{d} v}{\mathrm{~d} x}$. Given that $v=\frac{\mathrm{d} x}{\mathrm{~d} t}$, form a differential equation relating v and x. Show that

$$
\begin{equation*}
v=100 \sqrt{1-\mathrm{e}^{-\frac{x}{500}}} . \tag{5}
\end{equation*}
$$

(iv) Find the distance of the ball-bearing from O after 5 seconds, giving your answer correct to 2 decimal places.

