

MATHEMATICS

9758

H2 Math Prelim Paper 1 (100 marks)

12 Sept 2022 3 hours

Additional Material(s): List of Formulae (MF26)

CANDIDATE NAME			
CLASS	/		

READ THESE INSTRUCTIONS FIRST

Write your name and class in the boxes above.

Please write clearly and use capital letters.

Write in dark blue or black pen. HB pencil may be used for graphs and diagrams only.

Do not use staples, paper clips, glue or correction fluid.

Answer all the questions and write your answers in this booklet. Do not tear out any part of this booklet.

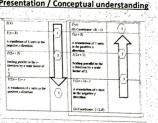
Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

You are expected to use an approved graphing calculator.

Where unsupported answers from a graphing calculator are not allowed in a question, you are required to present the mathematical steps using mathematical notations and not calculator commands.

All work must be handed in at the end of the examination. If you have used any additional paper, please insert them inside this booklet.

The number of marks is given in brackets [] at the end of each question or part question.


Question number	Marks
1	
2	
3	
4	
5	
6	
7	
8	
. 9	
10	
11	
Total	

This document consists of 22 printed pages and 2 blank pages.

[Turn Over

1	For positive real constant c , state a sequence of three transformations in terms		
	of c, that will transform the graph with equation of the form $y = f(2x+3)+c$	- 1	
-	onto the graph with equation $y = f(x)$.	31	
	(ii) The point with coordinates (-2,0) that lies on the curve with equation of the		
	form $y = f(2x+3)+c$ is mapped onto the point with coordinates $(0,-1)$ that is		
1	on the curve with equation $y = f(x)$. State the value of c .	1	
	State the value of c.	[1]	
	Solution		
	(i) A translation of c units in the negative y direction.		
	Scaling parallel to the x-axis by a scale factor of 2.		
	A translation of 3 units in the positive x-direction. (ii) $ c=1\rangle$		1
	123		1
	f(x)	1	1
	(6) Counting (1)	1	
	f(x+3) (1) Coordinate: $(0,-1)$		
			1
	A translation of 3 units in the negative x-direction A translation of 3 units		1
	in the positive x-		1
	f(2x+3) direction		1
	$\begin{pmatrix} 2 \end{pmatrix} \qquad \begin{pmatrix} f(2x+3) \end{pmatrix} \qquad \begin{pmatrix} 2 \end{pmatrix}$		
	Scaling parallel to the x- direction by a scale factor of		1
	direction by a scale factor of 1 Scaling parallel to the x-direction by a scale		
	$\frac{1}{2}$.		-
	£(2m 2)		1
	f(2x+3)+c		
	A translation of c units in the		
	positive a direction / A manifestation of c units		
	in the negative y-direction		
	unection		
	(ii) Coordinate: (-2,0)		
2	The complex numbers and the complex numbers and the complex numbers are set of the complex numbers and the complex numbers are set of the complex numbers a		4
2	The complex numbers z_1 , z_2 and z_3 are given by $z_1 = (1 - \sqrt{3}i)^2$,		
	$z_2 = \left[\sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)\right]^6 \text{ and } z_3 = -1 + \sqrt{3}i.$		
	$ z_2 = \sqrt{2} \cos^{\frac{\pi}{4}} + i\sin^{\frac{\pi}{4}} $ and $ z_2 = -1 + \sqrt{3}i$	1	
	[[4 4)]		
	(D) 11:	_	
	(i) Using an algebraic method, find $\frac{z_2}{z}$ in the form $re^{i\theta}$, where $r > 0$ and θ is an		
		1	
	exact real constant such that $-\pi < \theta \le \pi$.	F2:	,
		[3	Ц
	(ii) Hence find $\frac{z_2}{z_1} + z_3$ in the form $pe^{i\alpha}$, where both r and θ are exact real		1
- 1	z ₁		
	constants such that $r > 0$ and $-\pi < \theta \le \pi$.	[2	,
		[3	1
	Solution	1	
	Solution	_	

Commented [SH1]: Question reading / Presentation / Conceptual understanding

Standard phrasing must be followed.
 Students should make it a point to memorise the phrasing for <u>Translation / Reflection/Scaling</u>. Marks should not be lost in these kin

of questions. Commented [SH2]: Conceptual Understanding

Understanding

Coordinate (-2.0) undersease to the coordinate (-2.

Coordinate (-2,0) undergoes the *only* 1 transformation which affects the y-axis of whi is the *Translation of c units in the negative y-direction* to Coordinate (0, -1)
Therefore: c = 1

	3		
	(i) $\frac{z_2}{z_1} = \frac{\sqrt{2}e^{\left(\frac{\pi}{4}\right)}}{\left[2e^{\left(\frac{\pi}{3}\right)}\right]^2}$		
	$\frac{z_2}{z_1} = 2e^{\left(\frac{13\pi}{6}\right)^{\frac{1}{6}}}$		
	$\left \therefore \frac{z_2}{z_1} = 2e^{\left(\frac{z}{6}\right)} \right $		
	(ii) $\frac{z_2}{z_1} + z_3 = 2e^{\left(\frac{\pi}{6}\right)^2} + 2e^{\left(\frac{2\pi}{3}\right)^2}$		
	$=2e^{\left(\frac{\pi}{6}+\frac{2\pi}{3}\right)_{i}}\left[e^{\left(\frac{\pi}{6}\frac{2\pi}{3}\right)_{i}}+e^{\left(\frac{\pi}{6}\frac{2\pi}{3}\right)_{i}}\right]$		
	$= 2e^{\left(\frac{S\pi}{12}\right)} \left[2\cos\left(-\frac{\pi}{4}\right) \right]$ $= 2\sqrt{2}e^{\left(\frac{S\pi}{12}\right)}$		1
3	It is given that the curve C has equation $y = \frac{x^2 - x + 7}{x - 2}$, $x \in \mathbb{R}$, $x \ne 2$.		
	(i) Without using a calculator, find the set of values that y cannot take.	[3]	1
	(ii) Sketch C, stating clearly the equations of any asymptotes, the coordinates of the stationary points and the point(s) where the curve crosses the axes.		1
	points and the point(s) where the curve crosses the axes.	[3]	4
	Solution	+	+
	(i) $y = \frac{x^2 - x + 7}{x^2 + x^2}$		1
	x-2		
	Method 1: $x^2 - x + 7 = y(x-2)$		
	(i) $y = \frac{x^2 - x + 7}{x - 2}$ Method 1: $x^2 - x + 7 = y(x - 2)$ $x^2 - (1 + y)x + 7 + 2y = 0$		+
	For the equation to not have real solutions, discriminant < 0	+	\dashv
	$\left[-(1+y)\right]^2 - 4(7+2y) < 0$		
	$y^2 - 6y - 27 < 0$	+	-
	(y-9)(y+3)<0 -3< y<9	+	\dashv
		-	-
	\therefore The set of values that C cannot take is $\{y \in \mathbb{R} : -3 < y < 9\}$.		\dashv

Commented [LT3]: <u>Misconception</u>
Did not obtain the correct exponential form for the complex numbers given.

Recommendation

- 1. Locate the point in the Argand Diagram before evaluating its argument.
- Whenever possible, use exponential form to perform any simplifications. Using polar form for any simplification is strongly discourage.

Commented [LT4]: Question Reading It is important to have the habit of leaving the final argument value of the complex number to be within the principal range.

Commented [LT5]: Misconception
Did not obtain the correct exponential form for z₃.

Commented [LT6]: Recommendation
Majority could not remember the properties
learnt in the lecture. It is important to remember
them.

Commented [LT7]: <u>Presentation of Answer</u> Final answer has to be in the simplest form whenever possible.

[Turn Over

Method 2:	
$y = x + 1 + \frac{1}{x - 2}$	
$\frac{dy}{dx} = 1 - \frac{9}{(x-2)^2} = 0 \text{ (for stationary points)}$	
y = 9 or -3	
$\frac{d^2 y}{dx^2} = \frac{18}{(x-2)^3}$	
When $x = 5$, $\frac{d^2y}{dx^2} = \frac{2}{3} > 0 \Rightarrow (5,9)$ is a minimum point	
When $x = -1$, $\frac{d^2y}{dx^2} = -\frac{2}{3} < 0 \Rightarrow (-1, -3)$ is a maximum point	
The curve is undefined at $x = 2$. For $x > 2$, $\frac{d^2 y}{dx^2} > 0 \Rightarrow$ curve is concave upwards	
For $x < 2$, $\frac{d^2 y}{dx^2} < 0 \Rightarrow$ curve is concave downwards	
\therefore The set of values that C cannot take is $\{y \in \mathbb{R} : -3 < y < 9\}$	
(ii) $y = \frac{x^2 - x + 7}{x - 2} = x + 1 + \frac{9}{x - 2}$	
y = x + 1 $(5, 9)$ $(-1, -3)$	
	$y = x + 1 + \frac{9}{x - 2}$ $\frac{dy}{dx} = 1 - \frac{9}{(x - 2)^2} = 0 \text{ (for stationary points)}$ $x - 2 = 3 \text{ or } - 3$ $x = 5 \text{ or } - 1$ $y = 9 \text{ or } - 3$ $\frac{d^2y}{dx^2} = \frac{18}{(x - 2)^3}$ When $x = 5$, $\frac{d^2y}{dx^2} = \frac{2}{3} > 0 \Rightarrow (5, 9)$ is a minimum point When $x = -1$, $\frac{d^2y}{dx^2} = -\frac{2}{3} < 0 \Rightarrow (-1, -3)$ is a maximum point The curve is undefined at $x = 2$. For $x > 2$, $\frac{d^2y}{dx^2} > 0 \Rightarrow$ curve is concave upwards For $x < 2$, $\frac{d^2y}{dx^2} < 0 \Rightarrow$ curve is concave downwards Hence $y \ge 9$ or $y \le -3$ \therefore The set of values that C cannot take is $\{y \in \mathbb{R} : -3 < y < 9\}$ (ii) $y = \frac{x^2 - x + 7}{x - 2} = x + 1 + \frac{9}{x - 2}$

Commented [KSM8]: Strategy
When the differentiation method is used and at
algebraic method is required, you must explain
the shape of the curve in all regions of x. Just
showing the existence of stationary points is
insufficient.

4	(i) Show that the first to:	
	(i) Show that the first two non-zero terms of the Maclaurin series for $\tan \theta$ is given by $\theta + \frac{1}{2}\theta^3$. You may use the structure	
	given by $\theta + \frac{1}{3}\theta^3$. You may use the standard results given in the List of Formulae (MF26).	
		[2]
	In the right-angle triangle <i>OBC</i> shown above, point A lies on <i>OB</i> such that $OA = 1$,	-
	and $OC=1$. It is given that angle COB is $\frac{\pi}{}$ radians and that	
	angle ACB is B radians (see diagram).	
	(ii) Show that $AB = \frac{2 \tan \theta}{1 - \tan \theta}$.	[2]
	(iii) Given that θ is a sufficently small angle, show that	[2]
	$AR \approx aQ + bQ^2 + aQ^3$	
	for exact real constants a , b and c to be determined.	[3]
	Solution	[3]
	(i)	
	$\tan\theta = \frac{\sin\theta}{\cos\theta}$	
	$=\sin\theta(\cos\theta)^{-1}$	
	$\approx \left(\theta - \frac{\theta^3}{3!}\right) \left(1 - \frac{\theta^2}{2!}\right)^{-1}$	
	$\approx \left(\theta - \frac{\theta^3}{3!}\right) \left(1 + \frac{\theta^2}{2!}\right)$	1
	$\approx \theta + \frac{\theta^3}{2!} - \frac{\theta^3}{3!}$	
	$=\theta+\frac{1}{3}\theta^3$	
	(ii) $\tan\left(\frac{\pi}{4} + \theta\right) = \frac{\tan\frac{\pi}{4} + \tan\theta}{1 - \tan\frac{\pi}{4}\tan\theta}$	
	$x = \frac{1 + \tan \theta}{1 - \tan \theta}$	
	$AB = \frac{1 + \tan \theta}{1 - \tan \theta} - 1$	

Commented [KSX9]: Presentation
Use approximate sign if you are writing down first few terms of the series only.

Misconception

$$\frac{\left(\theta - \frac{\theta^3}{3!}\right)}{\left(1 - \frac{\theta^2}{2!}\right)} = \theta - \frac{\theta}{3}$$

Commented [KSX10]: Due to lack of practice, many students did not know they have to do this step.

Commented [KSX11]: Method Students can also approach this question using sine rule.

	$AB = \frac{2 \tan \theta}{1 - \tan \theta}$	
	(iii) $AB = 2 \tan \theta (1 - \tan \theta)^{-1}$	
	$\approx 2\left(\theta + \frac{\theta^3}{3}\right)\left(1 - \left(\theta + \frac{\theta^3}{3}\right)\right)^{-1}$	Commented [KSX12]: As the question asker to show first three term of the series, students θ^3
	$\approx 2\left(\theta + \frac{\theta^3}{3}\right)\left(1 + \left(\theta + \frac{\theta^3}{3}\right) + \left(\theta + \frac{\theta^3}{3}\right)^2\right)$	should approximate $\tan \theta$ to $\theta + \frac{\theta^3}{3}$.
	$\approx \left(2\theta + \frac{2\theta^3}{3}\right)\left(1 + \theta + \theta^2\right)$	
	$\approx 2\theta + 2\theta^2 + \frac{8\theta^3}{3}$	
	$ a=2, b=2, c=\frac{8}{3} $	Commented [KSX13]: Presentation Students who managed to get to the correct answer did not state the values of a, b and c.
		anather and not state the rando or of 5 and a
-	Control State Control	
5	(i) By considering $u_n - u_{n+1}$, where $u_n = \frac{1}{n(n+1)(n+2)}$,	Commented [ABK14]: Approach When a question states "by considering",
	find $\sum_{n=1}^{N} \frac{1}{n(n+1)(n+2)(n+3)}$ in terms of N. (ii) Hence or otherwise, find $\sum_{n=5}^{N+3} \frac{1}{n(n-1)(n-2)(n-3)}$.	must use the approach by looking at the
-	n=1 n(n+1)(n+2)(n+3)	[3] Suggested expression $u_n - u_{m1}$ and work from here to solve this summation problem.
	(ii) Hence or otherwise, find $\sum_{i=1}^{N+3} \frac{1}{1}$.	
	$\sum_{n=5}^{\infty} n(n-1)(n-2)(n-3)$	Commented [ABK15]: Approach/ Strate With a statement like "hence", typically this
	(iii) Deduce that	approach is the best way to solve the problem
	$\frac{1}{6^2} + \frac{1}{12^2} + \frac{1}{20^2} + \frac{1}{30^2} + \frac{1}{42^2} + \dots$	The suggested "otherwise" approach can a
	$\frac{6^2}{6^2} + \frac{12^2}{12^2} + \frac{20^2}{30^2} + \frac{42^2}{42^2} + \dots$	used but often, it may not be the most effic
	is less than $\frac{1}{18}$. Show your workings clearly.	method to adopt under examination time constraint. So this has got to do with exam strategy. For the "hence" approach, use of
	Solution	previous result is necessary.
	(i)	Commented [ABK16]: Approach
		With a statement like "deduce", we must use the earlier results to prove this part o' question. We must relate clearly how this the question use the previous results to a
		the final solution.

With a statement like "deduce", we must st use the earlier results to prove this part of question. We must relate clearly how this p the question use the previous results to are the final solution.

$u_n - u_{n+1} = \frac{1}{n(n+1)(n+2)} - \frac{1}{(n+1)(n+2)(n+3)}$ $= \frac{(n+3) - n}{n(n+1)(n+2)(n+3)}$ 3	
$\Rightarrow u_n - u_{n+1} = \frac{1}{n(n+1)(n+2)(n+3)}$	
$\Rightarrow u_{n} - u_{n+1} = \frac{3}{n(n+1)(n+2)(n+3)}$ $= \frac{1}{3} \sum_{n=1}^{N} [u_{n} - u_{n+1}]$ $= \frac{1}{3} \begin{bmatrix} u_{1} - u_{2} \\ + u_{2} - u_{3} \\ + u_{3} - u_{4} \end{bmatrix}$ $= \frac{1}{4} \begin{bmatrix} u_{1} - u_{2} \\ + u_{2} - u_{3} \\ + u_{3} - u_{4} \end{bmatrix}$ $= \frac{1}{4} \begin{bmatrix} u_{1} - u_{2} \\ + u_{2} - u_{3} \\ + u_{3} - u_{4} \\ + u_{4} - u_{N+1} \end{bmatrix}$ $= \frac{1}{4} \begin{bmatrix} u_{1} - u_{2} \\ + u_{2} - u_{3} \\ + u_{3} - u_{4} \\ + u_{4} - u_{5} \end{bmatrix}$ $= \frac{1}{4} \begin{bmatrix} u_{1} - u_{2} \\ + u_{2} - u_{3} \\ + u_{3} - u_{4} \\ + u_{4} - u_{5} \end{bmatrix}$ $= \frac{1}{4} \begin{bmatrix} u_{1} - u_{2} \\ + u_{2} - u_{3} \\ + u_{3} - u_{4} \\ + u_{4} - u_{5} \end{bmatrix}$	
$= \frac{1}{3} [u_1 - u_{N+1}]$ $= \frac{1}{3} \left[\frac{1}{(1)(2)(3)} - \frac{1}{(N+1)(N+2)(N+3)} \right]$	
$= \frac{1}{18} - \frac{1}{3(N+1)(N+2)(N+3)}$ (ii) By replacing n with (n+3),	
$\sum_{n=5}^{N+3} \frac{1}{n(n-1)(n-2)(n-3)} = \sum_{n+3=5}^{n+3=N+3} \frac{1}{(n+3)(n+3-1)(n+3-2)(n+3-3)}$	
$= \sum_{n=1}^{N} \frac{1}{(n)(n+1)(n+2)(n+3)}$ $= \sum_{n=1}^{N} \frac{1}{(n)(n+1)(n+2)(n+3)} - \sum_{n=1}^{1} \frac{1}{(n)(n+1)(n+2)(n+3)}$	
$= \left[\frac{1}{18} - \frac{1}{3(N+1)(N+2)(N+3)}\right] - \left[\frac{1}{(1)(2)(3)(4)}\right]$	
$=\frac{1}{72}-\frac{1}{3(N+1)(N+2)(N+3)}$	
(iii) For positive integers n	

Commented [ABK17]: Approach

In evaluating this summation using the Method of Difference, avoid substituting values for each term in this case. The approach is clear that we are using $u_i - u_{int}$. If we insist in evaluating each value, do note that the method is not wrong but it is <u>NOT EFFICIENT</u> under examination time

Commented [ABK18]: Technique

We have solved this in part (i)

 $\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)(n+3)} = \frac{1}{18} - \frac{1}{3(N+1)(N+2)(N+3)}.$ For part (ii), taking the "hence" approach, we are to use the above result.

For such a question the technique is to use "replacement of n". We should always start from the question that we are targeting. In this case we are "replacing n with (n+3)". Why "n+3"? The simple reason is that we want to make the current expression looks the same as that found in part (i) so that we can use its result.

Commented [ABK19]: Continuation from above:

At this juncture, the expression within the summation is now the same as that of part (i). Now, we need to split the limits to apply the result in part (i) correctly. Remember the "cutting the cake" method – basically counting the terms.

	$n^2 + 2n < n^2 + 2n + 2$		
	$n^{2} + 3n < n^{2} + 3n + 2$ $n(n+3) < (n+1)(n+2)$		
	$ \frac{n(n+1)(n+2)(n+3) < (n+1)^2 (n+2)^2}{1 \cdot \frac{1}{n(n+1)(n+2)(n+3)}} \gtrsim \frac{1}{(n+1)^2 (n+2)^2} $,	1
	So $\sum_{n=1}^{N} \frac{1}{(n+1)^2(n+2)^2} < \sum_{n=1}^{N} \frac{1}{n(n+1)(n+2)(n+3)}$		
	As $\frac{1}{6^2} + \frac{1}{12^2} + \frac{1}{20^2} + \dots = \lim_{N \to \infty} \sum_{n=1}^{N} \frac{1}{(n+1)^2 (n+2)^2}$		
	$<\lim_{N\to\infty}\sum_{n=1}^{N}\frac{1}{n(n+1)(n+2)(n+3)}$		
	$= \lim_{N \to \infty} \left[\frac{1}{18} - \frac{1}{3(N+1)(N+2)(N+3)} \right]$		
	$=\frac{1}{18}$		
	Thus $\frac{1}{6^2} + \frac{1}{12^2} + \frac{1}{20^2} + \dots < \frac{1}{18}$ (deduced)		
			1
6	(a) Find $\int \frac{\sin^{-1}(2x-1)}{\sqrt{1-x}} dx$ for $0 < x < 1$.	[3]	-
	(b) (i) Sketch the graphs of $y = x^2 - 7 $ and $y = x + 5$ on the same diagram.		1
	Indicate clearly the x-intercepts and the values of x where the two curves		
	intersect. Hence solve the inequality $ x^2 - 7 \ge x + 5$.	[4]	
	(ii) Hence, for $a > 5$, find $\int_3^a \left x^2 - 7 - x - 5 \right dx$ in terms of a . Leave your answer		
	in exact form.	[3]	١
_	Solution		
	(a)]
	(-7		
		L	

Commented [ABK20]: Method

This inequality must be established before we can proceed with the next step. To even think about this inequality we must first identify the expression for this sum to infinity:

$$\frac{1}{6^2} + \frac{1}{12^2} + \frac{1}{20^2} + \dots = \sum_{n=1}^{\infty} \frac{1}{(n+1)^2 (n+2)^2}$$

 $\frac{1}{6^2} + \frac{1}{12^2} + \frac{1}{20^2} + \dots = \sum_{n=1}^{\infty} \frac{1}{(n+1)^2 (n+2)^2}.$ Looking at the RHS, that means we need to establish a link between $\frac{1}{(n+1)^2 (n+2)^2}$ and n(n+1)(n+2)(n+3) which is found in our original expression. This is the start of our thinking process.

Also, we know that we need to show

 $\frac{1}{6^2} + \frac{1}{12^2} + \frac{1}{20^2} + \dots = \sum_{n=1}^{\infty} \frac{1}{(n+1)^2 (n+2)^2} < \frac{1}{18}$ The only $\frac{1}{18}$ that we can find is from part (i).

This would give us more clue to establish a link (inequality) between $(n+1)^2(n+2)^2$ and

$$n(n+1)(n+2)(n+3)$$

Commented [KW(W21]: Question Reading

 $\int \frac{\sin^{-1}(2x-1)}{\sqrt{1-x}} \, dx \text{ (indefinite integral) for } 0 < x < 1 \text{ is not equivalent to}$

$$\int_0^1 \frac{\sin^{-1}(2x-1)}{\sqrt{1-x}} dx$$
 (definite integral).

	9	
	$\int \frac{\sin^{-1}(2x-1)}{\sqrt{1-x}} dx = -2\sqrt{1-x} \cdot \sin^{-1}(2x-1) + \int 2\sqrt{1-x} \frac{2}{\sqrt{1^2 - (2x-1)^2}} dx$ $= -2\sqrt{1-x} \cdot \sin^{-1}(2x-1) + 4 \int \frac{\sqrt{1-x}}{\sqrt{1-x}\sqrt{4x}} dx$ $= -2\sqrt{1-x} \cdot \sin^{-1}(2x-1) + 2 \int (x)^{\frac{1}{2}} dx$ $= -2\sqrt{1-x} \cdot \sin^{-1}(2x-1) + 4\sqrt{x} + C$ (b)(i)	
	$y = x^2 - 7 $ $y = x + 5$ $y = -5$ $y = -5$ $y = -7$ $y = -7$ $y = -7$	
	From the sketch, $ x \le -3 $ or $ -2 \le x \le 1 $ or $ x \ge 4 $	
	(ii) $ \iint_{3} \left x^{2} - 7 - x - 5 \right dx = \iint_{3} x + 5 - x^{2} - 7 dx + \iint_{3} x^{2} - 7 - x - 5 dx $	
	$= \frac{19}{6} + \int_{4}^{a} x^{2} - 7 dx - \int_{4}^{a} x + 5 dx$	
	$= \frac{19}{6} + \left[\frac{x^3}{3} - 7x\right]_4^a - \left[\frac{x^2}{2} + 5x\right]_4^a$ $= \frac{19}{6} + \left(\frac{a^3}{3} - 7a\right) + \frac{20}{3} - \left(\frac{a^2}{2} + 5a\right) + 28$ $= \frac{a^3}{3} - \frac{a^2}{2} - 12a + \frac{227}{6}$	
	$-\frac{3}{3} - \frac{12u + 6}{6}$	
7	A curve C has parametric equations $x = \sin^3 t , y = \cos^2 t, -\frac{\pi}{2} < t < 0.$	
	The tangent at the point $P(\sin^3 p, \cos^2 p)$, $-\frac{\pi}{2} , meets the x-axis and y-axis$	
	at Q and R respectively. (i) By finding the equation of the tangent at the point P, show that the area of the	
	triangle OQR is $-\frac{1}{12}\sin p (2+\cos^2 p)^2$.	[6]
	(ii) Find a cartesian equation of the locus of the mid-point of QR as p varies. You need not indicate its domain.	[5]
	Solution	

Commented [KW(W22]: Techniques

There were many mistakes observed for this part:

- Some students did not know that they need to use integration by parts.
- Others were not able to choose u and dv/dx correctly.
- Some others were not able to differentiate $\sin^{-1}(2x-1)$ and/or integrate $\frac{1}{\sqrt{1-x}}$ and/or $\frac{1}{\sqrt{x}}$ correctly.

Commented [KW(W23]: Presentation The graph of $y = |x^2 - 7|$ is symmetrical about

the y-axis. Some students could not draw the graph correctly for $x < -\sqrt{7}$ and $x > \sqrt{7}$.

Commented [KW(W24]: Concept/Presen Some students do not know when to use 'or' a

'and'. Others use ',' instead of 'or'. Commented [KW(W25]: Method

Students should use part (ii) to determine how split the interval from 3 to a and the sign of $|x^2-7|-x-5|$ in the respective intervals.

(i)	
$x = \sin^3 t \qquad y = \cos^2 t$	Commented [CKJ26]: Observation
dx dy	Many students did a conversion using double
$\frac{dx}{dt} = 3\sin^2 t \cos t \qquad \frac{dy}{dt} = -2\sin t \cos t$	angle formula before differentiation. Some
$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-2\sin t\cos t}{3\sin^2 t\cos t} = -\frac{2}{3\sin t}$	students continue to modify the expression using
$\frac{dx}{dx} = \frac{3\sin^2 t \cos t}{3\sin t}$	factor formula which was not necessary. Students should know how to differentiate the
At the point $P, x = \sin^3 p$	given expression directly.
$y = \cos^2 p$	g. t. s. s. p. saster, s. restary
$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{2}{3\sin p}$	
Equation of the tangent at the point P:	
$y-\cos^2 p = -\frac{2}{3\sin p}(x-\sin^3 p)$	Commented [CKJ27]: Common Mistake
	Some students did not know that they had to find the gradient at the point P. Some students
When $y = 0$, $-\cos^2 p = -\frac{2}{3 \sin p} (x - \sin^3 p)$	gave the equation of tangent at P as
. 3 3	$y - \cos^2 p = -\frac{2}{3 \sin t} (x - \sin^3 p) \text{ which was}$
$x = \sin^3 p + \frac{3}{2} \sin p \cos^2 p$	33
$x = \frac{1}{2}\sin p(2\sin^2 p + 3\cos^2 p)$	incorrect.
$\frac{x-2\sin p(2\sin p+3\cos^2 p)}{2}$	
$x = \frac{1}{2}\sin p(2 + \cos^2 p)$	
$Q\left(\frac{1}{2}\sin p(2+\cos^2 p),0\right)$	
When $x = 0$, $y - \cos^2 p = -\frac{2}{3\sin p}(0 - \sin^3 p)$	
$y = \frac{2}{3}\sin^2 p + \cos^2 p$	
$y = \frac{1}{3}(2\sin^2 p + 3\cos^2 p) = \frac{1}{3}(2 + \cos^2 p)$	
$R\left(0,\frac{1}{3}(2+\cos^2 p)\right)$	
Area of the triange OQR	
	Commented [CKJ28]: Common Mistake
$=\frac{1}{2}\times OQ\times OR$	Many students did not realise the x coordinate
	of Q is negative or sin p < 0. To remove the
$ = \frac{1}{2} \sin p(2 + \cos^2 p) \times \frac{1}{3} 2 + \cos^2 p $	modulus sign, students need to introduce a minus sign in front.
	Aminos sign in none.
$=\frac{1}{12} \sin p (2+\cos^2 p)^2$	
$ = -\frac{1}{12}\sin p \left(2 + \cos^2 p\right)^2 \left(\sin p < 0 : -\frac{\pi}{2} < p < 0\right) $	1 1
(ii) 2 7 7 7	
()	

11	
Mid point of $QR = \left(\frac{\frac{1}{2}\sin p(2+\cos^2 p)+0}{2}, \frac{0+\frac{1}{3}(2+\cos^2 p)}{2}\right)$	
$= \left(\frac{1}{4}\sin p(2+\cos^2 p), \frac{1}{6}(2+\cos^2 p)\right)$	ļ
$x = \frac{1}{4}\sin p(2 + \cos^2 p) $	
$y = \frac{1}{6}(2 + \cos^2 p) \qquad(2)$ $\frac{(1)}{(2)} \text{ gives}$	
$\frac{x}{y} = \frac{\frac{1}{4}\sin p(2 + \cos^2 p)}{\frac{1}{6}(2 + \cos^2 p)}$	
$\frac{x}{y} = \frac{3}{2}\sin p$	
$\sin p = \frac{2x}{3y}$ $y = \frac{1}{6}(2 + \cos^2 p)$	
$y = \frac{1}{6} (2 + (1 - \sin^2 p))$	
$y = \frac{1}{6} \left(3 - \frac{4x^2}{9y^2} \right)$	
$y = \frac{1}{54y^2} \left(27y^2 - 4x^2 \right)$	
$54y^3 = 27y^2 - 4x^2$ Cartesian equation of the locus of the mid-point of <i>QR</i> is $54y^3 = 27y^2 - 4x^2$	

Commented [CKJ29]: Observation

his question was poorly attempted. Many tudents did not attempt the question.

Approach The idea is to find the mid point of QR. Exp and y in terms of p. Then think of a way to of the parameter p.

8 (a) Function	ons f and g are defined by	
f	$: x \mapsto x^2, x < 0,$	
8	$x: x \mapsto \frac{1}{x}, x > 0.$	
(i) E	xplain why the composite function gf exists.	[1]
(ii) F	and the exact value of $f^{-1}g^{-1}(3)$. Show your workings clearly.	[1]
(b) For r	eal values a, the function h is defined by	[3]
	$h: x \mapsto ax - \frac{1}{x}, x < 0.$	
	*	
(i)	If a is negative, explain clearly with a well-labelled diagram, why h^{-1}	
	does not exist.	[4]
(ii)	If $a = 1$, find h^{-1} in similar form.	[3]
Solution		
(ai) R _f =	$(0,\infty)$ and $D_{\epsilon} = (0,\infty)$	-
	© D _g , the composite function gf exists.	-
(ii) Let f	-1g ⁻¹ (3) = k	_
	$f(k) = k^2 - \dots - (1)$	
$g(k^2) =$		
	3	
$\frac{1}{k^2} = 3$		
- K		
1		
1		
1		
I		

Commented [LT30]: Question Reading Many did not comprehend what it means to be a well-labelled diagram. Some bad examples are shown below. One needs to indicate the key features of the curve like turning point(s), asymptote(s), intercept(s), if any.

Commented [LT31]: Presentation of Answer It is important to tell the marker what the individual range and domain were before making the conclusion.

Commented [LT32]: Misconception Some did not indicate the equal sign in this statement made.

Commented [LT33]: Recommendation
$$f^{-1}g^{-1}(3) = k$$
 $\Rightarrow ff^{-1}g^{-1}(3) = f(k) \Rightarrow g^{-1}(3) = k^2$ So one need not find the composite function to do this question.

$$f^{-1}g^{-1}(x) \neq (fg)^{-1}(x)$$

In fact $f^{-1}g^{-1}(x) = (gf)^{-1}(x)$

In fact
$$f^{-1}g^{-1}(x) = (gf)^{-1}(x)$$

13	
$k = -\frac{\sqrt{3}}{3} \left(: D_r = (-\infty, 0) \right)$	
(bi) $h(x) = ax - \frac{1}{x}$	
$h'(x) = a + \frac{1}{x^2}$	
$\begin{bmatrix} x^2 \\ For a & \frac{1}{2} - 0 \end{bmatrix} = 1 \sqrt{-a}$	
For $a + \frac{1}{x^2} = 0 \Rightarrow x = \frac{-1}{\sqrt{-a}} = \frac{\sqrt{-a}}{a} (\because x < 0)$	
$h\left(\frac{\sqrt{-a}}{a}\right) = \sqrt{-a} + \sqrt{-a} = 2\sqrt{-a}$	
$y = ax$ $\sqrt{-a} 2\sqrt{-a}$	
$ \begin{array}{c} $	
Since the horizontal line $y = 2\sqrt{-a} + 1$ cuts the curve twice, the function is a	ot a 1-
function and so h does not exist.	100 TO
·	

Commented [LT34]: Misconception Many forgot that k must be in the domain o equation (1) to work.

Commented [LT35]: Misconception
A number did not identify the correct x val
the turning point.

Commented [LT36]: Presentation
A number did not simplify the answer.

Note that
$$\frac{-a}{\sqrt{-a}} = \frac{\left(\sqrt{-a}\right)^2}{\sqrt{-a}} = \sqrt{-a}$$

Commented [LT37]: Presentation of and Question Reading

Many failed to indicate the key features of curve (turning point, asymptotes) and sor not even draw the required curve within domain stated. One such bad example is shown below.

Commented [LT38]: Misconception To disprove that it is a one-one function sufficient to suggest one particular horiline that violates the horizontal line tes Many wrote "for all lines y=k, k is a reathe line cuts the curve more than once is not true for line y=0.

	(ii) Let $y = h(x) = x - \frac{1}{x}$	
	$y=x-\frac{1}{2}$	
	y=x	
	$yx = x^2 - 1$	
	$x^2 - xy - 1 = 0$	
	$y + \sqrt{y^2 + 4}$	
	$x = \frac{y \pm \sqrt{y + 4}}{2}$	
	$x = \frac{y \pm \sqrt{y^2 + 4}}{2}$ $x = \frac{y - \sqrt{y^2 + 4}}{2} (\because x < 0)$	
	$h^{-1}: x \mapsto \frac{x - \sqrt{x^2 + 4}}{2}, x \in \mathbb{R}$	
	200 3 200 4	
9	(a) An arithmetic progression has first term a and common difference d , where	
	$a > 0$ and $d \ne 0$. The eighth, third and second term of the progression are the	
	first three terms of an infinite	
_	first three terms of an infinite geometric progression.	
_	(i) Find the common ratio of the geometric progression.	[3]
	(ii) Find the exact sum of the odd-numbered terms of the geometric progression in terms of a.	
	(b) A programmer coded a program involving a robbit formal	[3]
	Fam to model the actual fittill for a rappit by a for	
	The rabbit first hop is 1.75 m. In each subsequent hop, the distance and in	
	170 less than its picylous non. The fox first leans 3 m. In each auto-	
	the distance covered is 0.02 m less than its previous loop. Initially the militial	
	60 m ahead of the fox and assume that the rabbit and the fox start and end each hop and leap at the same time.	
	(i) By finding the total distance travelled by the fox and the rabbit after n	-
-	leaps and nops respectively, find the minimum number of hops and leaps	
-	for the fox to catch up with the rabbit.	[4]
	(ii) Find the number of leaps the fox takes before it comes to a stop. Hence,	
	find the minimum starting distance, in metre, between the fox and the	
	rabbit such that the fox will never catch up with the rabbit. Leave your answer to the nearest integer.	
	The state of the s	[2]
\rightarrow	Solution	-
+	(ai) Let b and r be the first term and common ratio of the G.P.	
	b = a + 7d(1)	
1	br = a + 2d(2) $br^2 = a + d$ (3)	
+	From (1) and (2) gives	-
	b-br = 5d(4)	
	From (2) and (3) gives	
	$br - br^2 = d \qquad (5)$	
+	(4) divides (5) gives	-

Commented [LT39]: Misconception
A number did not select the correct equation that is based on the domain of h(x).

Commented [LT40]: Question Reading
A number did not express the answer in the similar form. It must be written in the form as how the question has presented.

15	
$\frac{1-r}{r-r^2} = 5$	
$5r^2 - 6r + 1 = 0$	-
(5r-1)(r-1) = 0	
$r = \frac{1}{5}$ or $r = 1$ (rejected since $d \neq 0$)	
(ii) From (5), $\frac{4}{25}b = d$.	
And from (3), $b = -\frac{25}{3}a$	
$\left \left(S_{\infty}\right)_{\text{odd}} = \frac{b}{1-r^2}\right $	
$\begin{vmatrix} (S_{\infty})_{\text{odd}} & \frac{1}{1-r^2} \\ & = \frac{-\frac{25}{3}a}{1-\frac{1}{25}} \end{vmatrix}$	
$=-\frac{625a}{72}$	
(bi) $(S_n)_{66} = \frac{n}{2} [2(3) + (n-1)(-0.02)] = n(3.01 - 0.01n)$	
$(S_n)_{\text{nabbit}} = \frac{1.75[1 - 0.99^n]}{1 - 0.99} = 175(1 - 0.99^n)$	
For the fox to catch the rabbit, $n(3.01-0.01n) = 175(1-0.99^{\circ}) \ge 60$	
Let $Y = n(3.01 - 0.01n) - 175(1 - 0.99^n)$ From GC, $ \begin{array}{c cccc} n & Y \\ \hline 53 & 59.171 < 60 \\ \hline 54 & 60.084 > 60 \\ \hline 55 & 60.987 > 60 \end{array} $	
Least $n = 54$ (ii) Let k be the starting distance between fox and rabbit. For the fox to never catch up with the rabbit, $k > \text{Max} \left[n(3.01 - 0.01n) - 175 (1 - 0.99^n) \right]$	
To find <i>n</i> for which the fox stop moving, $T_n = 0$ 3 + (n-1)(-0.02) = 0 n = 151	
The fox takes 150 leaps before it stops moving. From GC, for $0 \le n \le 150$,	

Commented [KSM41]: Question Reading Question specified that the G.P. is infinite. Many did not read this and proceed to find Sn. Interpretation

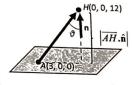
Majority who got this wrong mistook the first

Majority who got this wrong mistook the first term of G.P. to be that of the A.P.

Commented [KSM42]: <u>Strategy</u>
There is no need to deduce the general term from scratch here, and many wasted time to do

Commented [KSM43]: Presentation Students should express this in inequality form to explain why the n obtained is the least.

Commented [KSM44]: Presentation
Those who fail to show either the graph or table
will not be awarded full credit.


Commented [KSM45]: Interpretation and misconception

Here, at the 151th leap, the fox would have stopped its movement. So it's at the 150th leap before it stopped. Hence, we should analyse the graph of the difference in the distance travelle within the animals' first 150 leaps. Almost all who did this part assumed that the minimum is between the two animals occurred at the 151th or 150th leap. Do take note the Maximum or minimum point of a graph may not occur at its end points.

	16	
	$k > \text{Max} \left[n(3.01 - 0.01n) - 175 (1 - 0.99^n) \right] = 94.827$	
	Hence minimum k is 95 m (to the nearest integer)	
10	The production team of a popular variety show, Sprinting Man, is preparing a site for a segment of the show. In this segment, each participant is to sprint from the starting point, go up a ramp and press a buzzer to complete the challenge.	
	slant wall $H(0, 0, 12)$ buzzer $(10.5, -10.5, 10.5)$ ramp foam ball $x-y-2z=3$	
	Referring the starting point as the origin O and the horizontal ground as the $x-y$	
	plane, the top surface of the ramp has equation $x-y-2z=3$ (see diagram that is	
_	not drawn to scale). Distances are measured in metres.	
_	(i) Find the angle of inclination of the ramp.	[2]
	A spherical polyurethane foam ball of radius 1 m is suspended from a point H with coordinates $(0, 0, 12)$ by a cable of length k m, that is taut all the time. The ball will	
	be swung in various directions during the challenge to increase the level of difficulty.	
	(ii) If the production team wants to ensure that the foam ball will never come in	
	contact with the ramp, find the range of values that k can take. The buzzer that the participants are to press is located at the point with coordinates (10.5, -10.5, 10.5). This point lies on a flat slant wall which intersects the ramp	[3]
	along the line <i>l</i> with cartesian equation $x = y + 20$, $z = 8.5$.	[2]
-	 (iii) Find a cartesian equation of the slant wall. A camera is to be placed along a line L with equation r = 12k + t(i+3j), t∈ R, 	[3]
	A camera is to be placed along a line L with equation $r = 12k + t(1+3j)$, $t \in \mathbb{R}$, with its position denoted by C.	
	(iv) If the camera is at a distance of $\sqrt{254}$ m from a point P with coordinates	
	(10, -10 , 10), determine the possible coordinates of C exactly, showing your	
	workings. Hence deduce the point on L that is nearest to P .	[4]
	Solution	

(i) Angle of inclination of the ramp	$= \cos^{-1} \frac{\begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}}{\sqrt{1^2 + 1^2 + 2^2}}$ $= \cos^{-1} \frac{2}{\sqrt{6}} \approx 35.264^{\circ} = 35.3^{\circ} \text{ (1 d.p.)}$

(ii) A point on the ramp is A(3, 0, 0). Let the normal to the ramp be $\mathbf{n} = \begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix}$

Shortest distance from H to ramp = $|\overline{AH} \cdot \hat{\mathbf{n}}|$

$$= \frac{\begin{bmatrix} -3 \\ 0 \\ 12 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix}}{\sqrt{1+1+4}} = \frac{27}{\sqrt{6}} \ (\approx 11.0227)$$

Since the diameter of the ball is 2 m, $0 < k < \frac{27}{\sqrt{6}} - 2$ [or 0 < k < 9.02 (3 s.f.)].

Commented [TCK46]: Question Reading

The angle of inclination is just the angle between the two planes of the ramp and the ground. Identify the normal of these planes and take the acute angle which means a need to take the modulus value of the dot product.

Many answers were complicated and showed a lack of understanding of the question.

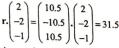
Careless mistake

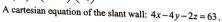
The dot product and the magnitude of the normal vectors are worked wrongly.

Commented [TCK47]: Interpretation of question

The length of cable plus the diameter of the ball (i.e. k+2) must be less than the shortest distance from H to the ramp if the ball is not to touch the ramp at all.

Presentation


The quality is generally poor with students not explaining what they are doing clearly and not using proper notation, e.g., taking a position vector and cartesian coordinates of a point to be the same, taking x to mean dot product.


(iii)
$$l: \mathbf{r} = \begin{pmatrix} 0 \\ -20 \\ 8.5 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \ \lambda \in \mathbb{R}$$

A vector parallel to the slant wall is $\begin{pmatrix} 10.5 \\ -10.5 \\ 10.5 \end{pmatrix} - \begin{pmatrix} 0 \\ -20 \\ 8.5 \end{pmatrix} = \begin{pmatrix} 10.5 \\ 9.5 \\ 2 \end{pmatrix}$

Therefore, a normal to the slant wall is

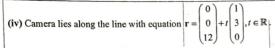
$$\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \times \begin{pmatrix} 10.5 \\ 9.5 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \\ -1 \end{pmatrix}.$$

Commented [TCK48]: Presentation

Many still write
$$I = \begin{pmatrix} 0 \\ -20 \\ 8.5 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
 and not explain

what λ is.

Careless mistake


Many do not convert the equation of / from cartesian to vector form successfully. This affects all subsequent working.

Commented [TCK49]: Interpretation of question

This question is about finding the equation of the plane of the slant wall. To find it, we need a point on the plane and the normal vector. We have the point which is (10.5, -10.5, 10.5) but not the normal vector. To find the normal, we need two direction vectors parallel to the plane.

Misconception

Many students took the normal vector of the ramp as one of the direction vectors.

As the camera needs to be $\sqrt{254}$ m from P,

optimal optimal
$$\sqrt{254}$$
 $\sqrt{254}$ $P(10, -10, 10)$

(1, 3, 12) and (-5, -15, 12).

$$\sqrt{(t-10)^2 + (3t+10)^2 + (12-10)^2} = \sqrt{254}$$

$$(t^2 - 20t + 100) + (9t^2 + 60t + 100) + 4 = 254$$

$$10t^2 + 40t - 50 = 0$$

$$(t+5)(t-1) = 0$$

$$\therefore t = 1 \text{ or } t = -5.$$

The corresponding optimal positions are

By symmetry, the point along the line closest to P is the **midpoint** of the two optimal positions. Therefore, this point has coordinates

$$\left(\frac{1-5}{2}, \frac{3-15}{2}, 12\right) = (-2, -6, 12)$$

Commented [TCK50]: Careless mistake

Taking
$$12k$$
 as $\begin{pmatrix} 12\\0\\0 \end{pmatrix}$

Commented [TCK51]: Careless mistake

Errors in expansion. Students should perhaps use the GC to solve as a safeguard.

Commented [TCK52]: Presentation Not giving in coordinates form but as column vectors instead.

Commented [TCK53]: Presentation Instead of mid-point theorem, many solved from scratch for the point on L nearest to P.

11	The cylindrical tank in a research laboratory has a cross-sectional area of 4 m ² . To		
	cool the tank, water is pumped in and out of the tank simultaneously. The volume	- 1	
	and height of the water in the tank at any time t minutes is given by V (litres) and h	1	
	(metres) respectively. Clean water is pumped into the tank at a rate that is	1	
	proportional to h^2 and the water is pumped out from the tank at a rate that is		
	proportional to h.		
	(i) Assume that the water does not overflow and that there is no change to the height		
	dh kh(h-10)	1	
	of the water when h is 10, show that $\frac{dh}{dt} = \frac{kh(h-10)}{4}$ where k is a real constant.	[4]	
	The tank was initially filled with clean water to a height of 2 metres. When the height	1.1	
	of the water is 5 metres, the volume of water is increasing at a rate of 5.5 litres per		
	minute.		
		[5]	
	(ii) Find the exact value of k. Hence find h in terms of t.	[2]	
	(iii) Sketch a graph of h against t. Hence write down the minimum height of the	r23	
	cylindrical tank that will not result in the overflow of the water.	[3]	1
	Solution		1
	Appendix of the contain with the contain		1
	$dV dV_m dV_m$	1	1
	dt dt dt		ľ
	la 77		1
	$\frac{dV}{dt} = Ah^2 - Bh, A, B \in \mathbb{R}$	1	1
	$\frac{dV}{dt} = \frac{dV_{\text{in}}}{dt_{\text{in}}} \frac{dV_{\text{out}}}{dt_{\text{out}}}$ $\frac{dV}{dt} = \bar{A}h^2 - Bh, A, B \in \mathbb{R}$	1	4
	When $h = 10$, $\frac{\mathrm{d}V}{\mathrm{d}t} = 0$.		1
	when $n=10$, $\frac{1}{dt}=0$.		1
	B=10A		1
	Since $V = \pi r^2 h$ (and given that base area is 4 m ²)		7
	$\therefore V = 4 h$		1
	dV db		1
	$\frac{\mathrm{d}V}{\mathrm{d}t} = 4\frac{\mathrm{d}h}{\mathrm{d}t}$		1
	ur u	-	4
	$\Rightarrow 4\frac{\mathrm{d}h}{\mathrm{d}t} = Ah^2 - 10Ah$		
	$\rightarrow 4\frac{1}{dt} - Ah = 10Ah$		
	dh = kh(h-10)		
	$\Rightarrow \frac{dh}{dt} = \frac{kh(h-10)}{4}, \text{ where } A = k$		
		+	-
	(ii)	1	1
	$\frac{\mathrm{d}V}{\mathrm{d}t} = 5.5$,
	$\frac{dt}{dt} = 3.3$		
1	5k(5-10)		
	$5.5 = \frac{5k(5-10)}{4} \times 4$		
	·	1	
	. 11		
1	$k = -\frac{1}{50}$		
	4t 11k/k 10)	\top	_
	$\frac{dn}{dt} = -\frac{11n(n-10)}{n-10}$		
	$\frac{dh}{dt} = \frac{111(h-10)}{200}$		
	$k = -\frac{11}{50}$ $\frac{dh}{dt} = -\frac{11h(h-10)}{200}$		
	$\frac{dh}{dt} = -\frac{11h(h-10)}{200}$ $\int \frac{1}{h^2 - 10h} dh = -\int \frac{11}{200} dt$		

Commented [SH54]: 1.Question reading Clean water is pumped into the tank at a rate that

is proportional to h^2 and the water is pumped out from the tank at a rate that is proportional to h."

The above para - refers to Vol of water per unit time. Thus, the derivative $\frac{dV}{dt}$ should be used.

The proportionality of constant must be different for the rate of Clean water pumped in and for the rate of water pumped out. Majority of students used the same constant.

2. Presentation / Conceptual understanding

$$\frac{\mathrm{d}h}{\mathrm{d}t} = Ah^2 - Bh \text{ (Incorrect)}.$$

$$\frac{\mathrm{d}h}{\mathrm{d}t}=0, h=10, h(Ah-B)=0.$$
 Students used this derivative to calculate the value of B which is

If Students are using the below expression to solve for B, then it is correct.

$$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\frac{\mathrm{d}V}{\mathrm{d}t}}{\frac{\mathrm{d}V}{\mathrm{d}h}} = \frac{Ah^2 - Bh}{4}$$

3. It should be
$$\frac{dV}{dt}\Big|_{h=10} = Ah^2 - Bh = 0$$

$$\frac{\mathrm{d}h}{\mathrm{d}t}\bigg|_{h=10} = \frac{Ah^2 - Bh}{4} = 0$$

Commented [SH55]: Presentation

Final answer must be shown as given in the question.

21	
$\int \frac{1}{(h-5)^2 - 5^2} \mathrm{d}h = -\frac{11}{200} t + c$	
$\left \frac{1}{10} \ln \left \frac{(h-5)-5}{h} \right = \frac{11}{200} t + c \right $ $\ln \left \frac{h-10}{h} \right = -\frac{11}{20} t + 10c$	
$\ln \frac{ h-10 }{\ln \frac{ h-10 }{\ln h-10 }} = \frac{11}{1100}$	
$\begin{vmatrix} h & 20 \\ 100 & 0 \end{vmatrix}$	
$\left 1 - \frac{10}{h}\right = e^{-20^{t+10c}}$	
$\begin{vmatrix} 1 - \frac{10}{h} = e^{\frac{11}{20}t + 10c} \\ 1 - \frac{10}{h} = \pm e^{\frac{11}{20}t + 10c} \\ 1 - \frac{10}{h} = 1 + Ae^{\frac{11}{20}t} \\ h = \frac{10}{h^2} \begin{vmatrix} 1 - \frac{11}{4}t \\ 1 + Ae^{\frac{11}{20}t} \end{vmatrix}$	
$\left \frac{10}{h} = 1 + A e^{\frac{11}{20}t} \right $ $A = \pm e^{10c}$	
$h = \frac{10}{11}$	Ì
1+ $Ae^{-\frac{2t}{2}}$ When $t = 0$, $h = 2$	1
$2 = \frac{10}{2}$	
$2 = \frac{10}{1+A}$ $A = 4$	
4.0	
$h = \frac{10}{1 + 4e^{\frac{11}{20'}}}$ (iii)	
(iii)	
h	
10	
$h = \frac{10}{1 + 4e^{\frac{-11}{20}t}}$	
1+4e 30	
2	
0	
Minimum height of the cylindrical tank = 10 metres	

Commented [SH56]: 1.Conceptual

Many students, did not use the correct technique to integrate using Variable separable method.

Method to solve : By Partial Fractions Or by Completing the Square

Commented [SH57]: Presentation

- 1. Majority of students could not simplify $\frac{h-10}{h}$ to $1-\frac{10}{h}$. If this was done earlier, then
- the final answer will be neat and easy to work with.
- 2. In (function) is defined only when the function is positive. In circumstances that you are unsure, its always safe to place the modulus. So for this question, many students omitted the modulus.
- 3. Removal of Modulus sign must follow through in the presentation of the answer. Many neglected this working and was penalized for not showing the removal of modulus which will manifest ± in the subsequent line.

Commented [SH58]: Presentation of Graphs

- 1.Initial height = 2m must be shown on the graph
- 2.Sketch the graph $h = \frac{10}{1+4e^{\frac{11}{20}t}}$ to check the shape of the curve. Graph should only be
- drawn on the positive axis due to the context of the question. 3. Height = 10 must be captured as horizontal asymptote and graph sketched must not touch the asymptote
- 4. Many overlooked and lost 1 mark for not stating/ writing the min. height such that the water will not overflow.