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1 A particle is moving along the curve with equation 
2 216 9 144x y  .  

1d
2cm s

d

y

t

  and  
d

d

x

t
 is positive when 5x  .  

Find the rate of increase of x at this instant.  [4] 

   

 

2 Mr. Li invested a total of $30000 and divided this sum into three accounts, which paid     

2%, 3% and 5% annual interest respectively. 

 

At the end of the first year, Mr. Li withdrew all the money out from the 2% and 5% 

accounts and gave the interest earned to his son. The amount in the 3% account, including 

interest, was re-invested in the same account for another year. 

 

At the end of the second year, Mr. Li withdrew all the money out of the 3% account and 

gave the interest earned to his son.  

 

The total interest received by the son from the three accounts was $1423.50.  

 

Given that the amount invested in the 2% account was $1000 more than the amount 

invested in the 5% account, find the amounts invested in each of the three accounts. [4] 

   
 

3 (i) Prove that for 0x  , the substitution y ux  reduces the differential equation 

2 2d
( ) 2

d

y y
y x y x

x x

 
    

 
 to  

    
2 2

1 d
1

2 2 d

u u

u u x

  
   

   
. [2] 

   

 (ii) Hence find the general solution of the differential equation 

 

    
2 2d

( ) 2
d

y y
y x y x

x x

 
    

 
 for 0x  .    [3] 

   

 

4 (i) Sketch the curve with equation 2 2 6 7.x y x     [2] 

   

 (ii) The region R is bounded by the curve 2 2 6 7x y x   , for 3x  , and the line 3.x   

Given that 
2

2 2

0
d

4

a a
a x x


  , find the exact volume of the solid of revolution 

formed when R is rotated completely about the y-axis.         [4] 
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5 (a) Find 2cos d .x x x  [1] 

 (b) Use integration by parts to find cos 2 d .x x x  [3] 

 
 Hence or otherwise find 22

4

cos d .x x x



  [3] 

   

 

6 The diagram below shows the curve of  fy x .  The curve has a minimum point at  

 2, 2 , a maximum point at  2, 3  and cuts the y-axis at  0,3 . The lines 1x  , 4x   

and 3y   are the asymptotes to the curve. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On separate diagrams, draw sketches of the following graphs, stating the exact coordinates 

of any turning points and/or points of intersection with the axes, and the equations of any 

asymptotes, where possible. 

  

(a) 

 

f (1 )y x  .   [3] 

 
(b) 

 
1

f
y

x
 .  [3] 

 (c) f '( )y x .                        [3] 

  

 

    

  

x  
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7 It is given that  
2

f .
2

r

r
r




 Show that    
 

 

3 8 2
f 2 f

2

rr
r r

r r


  


.                   [2] 

  

 
(i) Show that 

 

 

1

3

3 8 2 (3 2)2
16

2 ( 1)

r nn

r

r n

r r n n





 
 

 
 .             [4] 

 
(ii) Hence find 

 

 1

3 2 2

2

rn

r

r

r r




  in the form 

1(3 )2

( )( 1)

nn A
C

n B n




 
 where A, B and C are 

integers to be determined.               [4] 

   

 

8 Do not use a calculator in answering this question. 

 

 (a) (i) Solve the equation 
2 4i 3.z     [3]  

   

  (ii) Solve the equation 4 26 25 0.z z     [3] 

   

 
(b) Find the modulus and argument of the complex number 

8 2i

5 3i
w





.  Hence find the 

possible values of the positive integer n for which nw  is real.  [4] 

   

 

 

9 A curve C has parametric equations  

    
4

ln ,   e ,
e

t

t
x t t y     

for 
1

2
t  . 

   

 (i) C meets the y-axis at point P and line L is the normal to C at P. Show that the 

equation of L is  

 
2

2

e 4 e
.

4 e e
y x


 


 [4] 

 

 (ii) Sketch the curve C, stating the coordinates of any turning points and points of 

intersection with the axes.               [3] 

   

 (iii)  The finite region bounded by C, L and the line 
1 1

ln
2 2

x
 

  
 

 is denoted by R. Find 

the area of R. [3]    
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10 The plane 1  contains the point (1,2, 1)A   and the line l with equation     

1 2
, 1

2 3

x z
y

 
   . The plane 2  contains the point ( 5.5,3,2)B    and meets 1  in the     

line l.  

 (i) Find the equation of 1  in scalar product form. [3] 

 

 

(ii) Show that the vector BF


is 

4.5

4

  3

 
 
 
 
 

, where F is the foot of perpendicular from B to l.

 [3] 

   

 (iii) Find the exact value of the shortest distance from B to 1 . [2] 

   

 (iv) Hence or otherwise find the acute angle between 1  and 2 , giving your answer to 

the nearest 0.1 .  [3] 

    

 

11 Figure 1 shows an open container in the form of a trapezoidal prism ABCDEFGH with 

square base ABCD  and cm,AB AE BF EH a     where a is a constant. The container 

is made of plastic of negligible thickness and is placed on a horizontal surface. The faces 

BCGF and ADHE are inclined at an angle   radians, 0
2


  , to the horizontal surface, 

and faces ABFE and DCGH are perpendicular to base ABCD.  Figure 2 shows its cross-

sectional view. 

 
 

 (i) Show that the volume V cm3 of the container is given by 3 sin (1 cos )V a    . [2] 

 

 (ii) Use differentiation to find, in terms of a, the maximum value of V in exact form, 

proving that it is a maximum.       [5] 

   

Trapezoidal Prism 

a 

a 

Height of the 

container 

    a  

a  a  

Cross-Sectional View 

a 

a 

Figure 1  

E 

B 

F 

A 

D C 

G H 

 

  

  Horizontal surface 

Figure 2 
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(iii) A particular container is constructed with 

3


   and it is filled with water to half its 

height. Find, in terms of a, the exact volume of water in this container. [3] 

 

 

The container is then tilted in the direction of the face BCGF until face BCGF and 

base ABCD makes the same angle with the horizontal surface.  

 

Figure 3 shows its cross-sectional view.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Explain if it is possible to tilt the container to this position without any water flowing 

out from the container.  [2] 

 

 

12 The von Bertalanffy growth model, introduced in 1938, is widely used in fisheries studies. 

It is used to predict the length, L mm of a fish over a period of time, t years. If L is the 

maximum length for a species, then the model assumes that the rate of growth in length of 

a fish is proportional to L L  . 

   

 (i) By setting up and solving a differential equation, show that the general solution of 

this differential equation is given by 
ktL L Ae

  , where k is the constant of 

proportionality and A is a positive constant.   [5] 

   

 For the species of fish known as the Atlantic croaker, it has been determined that   

419L  mm and at one year of age, its length is 219 mm and the rate of growth in length 

is 55 mm per year. Using the above model, obtain an expression for L in terms of t.           [3] 

  

 

 (ii) Find its age when the Atlantic croaker grows to a length of 300 mm.  [2] 

   

 (iii) Sketch a graph of L against t.      [2] 

 

 

 

  

a  a  

Cross-Sectional View 

Figure 3 

Face BCGF Base ABCD 

Horizontal surface 


