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1   The diagram below shows a shape which is symmetrical about the x- and y-axes. The 
shape is made up of four curves, A, B, C and D. 

  

 

 

 

 

 

 

 The curve A has equation 1x y  for 0 1x   and  0 1y .  

(i) State the equations and the range of values of x and y for curves B and C.    [3] 

(ii) The curves A and B are scaled by a factor 1
2

 parallel to the x-axis and the curves C 

and D are scaled by a factor 2 parallel to the y-axis. Sketch the resulting shape.       [2]                        

 

2 The position vectors of A, B, C and D are 1
5

, 
1
2

1
,

2
3
1

 and 
1

7
 respectively, 

where α and β are real numbers.  Given that BD is a perpendicular bisector of AC, find 
the values of α and β.                    [5] 

 

3 The hyperbola C passes through the point (2, 0) and has oblique asymptotes 2y x  and 
2y x .   

 (i)  Sketch C, showing the relevant features of the curve.       [2] 

 (ii) Write down the equation of C.          [1] 

 (iii) By adding a suitable curve to your sketch in part (i), solve the inequality 

      
2

1 1
4
x x .         [3]  
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4 A curve C has equation ex

y
x k

, x ≠ k, where k is a positive real number.  

Show algebraically that C has exactly one stationary point, and show that the stationary 
point lies in the first quadrant.            [3] 

Sketch C for x > k, indicating clearly the equation of the asymptote and the coordinates 
of the stationary point.            [2] 

Deduce that 
3
2

1
2

e d
xk

k
x

x k
 < 

1 3
2 21 3e e

3
k k

 for all positive real values of k.    [2]  

5 In geometric optics, the paraxial approximation is a small-angle approximation used in 
Gaussian optics and ray tracing of light through an optical system such as a lens.  

 In the diagram below, a light ray parallel to the horizontal axis is reflected at point B  on 
the circular lens centred at point C  and has radius  cmr . Let  radiansBCF . FM  
is the perpendicular bisector of CB . 

 

(i) Show that 
cos
rCF

k
,  where k  is a real constant to be determined.    [1] 

 
(ii) Hence find the series expansion for CF  if  is sufficiently small for 3  and terms 

in higher powers of  to be neglected.   [2]  

 

 Suppose that the source of the light ray is now repositioned such that 

 radians
6

BCF .  

 (iii) Find the corresponding series expansion for CF, up to and including the term in 2 .
  [4] 
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6 An arithmetic sequence has first term a and common difference d, where a and d are non-
zero.  The ninth, tenth and thirteenth terms of the arithmetic sequence are the first three 
terms of a geometric sequence. 

(i) Show that 15
2a d .           [3] 

(ii) The sum of the first n terms of the arithmetic sequence is denoted by nS .  Find the 
value of 16S .              [2] 

(iii) Given that the kth term of the arithmetic sequence is the fourth term of the geometric 
sequence, find the value of k.          [3] 

 

7 A curve C has parametric equations 
22 , e , for 0 .tx t y t t  

(i) Find the equation of the tangent to C at the point P with coordinates 
22, e pp p , 

where 0p .  Hence, or otherwise, find the exact equation of the tangent L to C 
which passes through the origin.  [5] 

 

(ii) (a) Find the cartesian equation of C. [1] 
 
  (b) Find the exact volume of the solid formed when the region bounded by C and 

L is rotated through 2  radians about the x-axis.  [5] 
 

8 Do not use a calculator in answering this question.  

The complex numbers z and w are given by 
4

2

1 i
1 i

z  and 2
8

3 i
w . 

(i) Express z and w in polar form cos isinr , where 0r  and .  
Give r and  in exact form.          [4] 

(ii) Given that 2 ,z w  and *w are the roots of the equation 3 2 0x bx cx d  where b, 
c and d are real values, find the equation.         [3] 

(iii) Sketch on an Argand diagram with origin O, the points P, Q and R representing the 
complex numbers ,z w  and z w  respectively.        [2] 

(iv) By considering the quadrilateral OPRQ and the argument of z w , deduce that  

5tan 2 3
12

 .        [3] 
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9 (a) Vectors u and v are such that 1u. v  and ( )u v u  is perpendicular to
( )u v v .  

  Show that 1u v .             [3] 

Hence find the angle between u and v.         [3] 

 

(b) The figure shows a regular hexagon ABCDEF with O at the centre of the hexagon.  
X is the midpoint of BC.   

 

 

 

 

 

 

 

Given that aOA aOA  and bOB bOB , find OFOF  and OXOX in terms of a and b.     [2] 

Line segments AC and FX intersect at the point Y.  Determine the ratio AY : YC.
                [4]
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10 Mr Ng wants to hang a decoration on the vertical wall above his bookshelf.  He needs a 
ladder to climb up.   

The rectangle ABCD is the side-view of the bookshelf and HK is the side-view of the 
ladder where 24AB cm and 192BC cm (see Figure 1).  The ladder touches the wall 
at H, the edge of  the top of the bookshelf at B and the floor at K. 

 

 

 

 

 

 

 

Figure 1 

(i) Given that HKD , show that the length , L cm of the ladder is given by 

 24 192
cos sin

L  . [1] 

(ii) Use differentiation to find the exact value of the shortest length of the ladder as  
varies. [4] 
[You do not need to verify that this length of the ladder is the shortest.] 

Take L to be 270 for the rest of this question.  

The ladder starts to slide such that H moves away from the wall and K moves towards E 
(see Figure 2).  The ladder maintains contact with the bookshelf at B.   

 

 

 

 

 

 

 

     Figure 2 

The horizontal distances from the wall to H and from the wall to K are x cm and y cm 
respectively.   
(iii) By expressing y x  in terms of , determine whether the rate of change of  y  is 

greater than the rate of change of  x. [3] 
(iv) Given that the rate of change of   is 10.1 rad s  when 160 cmCK , find the rate 

of change of  x  at this instant.  [5] 
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11 The daily food calories, L, taken in by a human body are partly used to fulfill the daily 
requirements of the body. The daily requirements is proportional to the body mass, M kg, 
with a constant of proportionality p. The rate of change in body mass is proportional to 
the remaining calories.  

 It is given that the body mass, M kg, at time t days satisfies the differential equation  

      d
d
M k L pM
t

, 

 where k and L are constants. 

John’s initial body mass is 100 kg. Find, in terms of p, the daily food calories needed to 
keep his body mass constant at 100 kg.          [1] 

To lose weight, John decides to start on a diet where his daily food calorie intake is 75% 
of the daily calories needed to keep his body mass constant at 100 kg. 

(i) Show that 75 25e pktM .                      [4] 

 (ii) John attained a body mass of 90 kg after 50 days on this diet. If it takes him n more 
days to lose at least another 10 kg, find the smallest integer value of n.                  
             [5] 

 (iii) John’s goal with this diet plan is to achieve a body mass of 70 kg. With the aid of 
 a graph, explain why he can never achieve his goal.               [2]   

(iv) By considering 
2

2

d
d

M
t

, comment on his rate of body mass loss as time passes.  [2] 

 


