2020 RI H2 Mathematics Prelim Paper 2 Solutions

Section A: Pure Mathematics [40 marks]

| $\mathbf{1}$ | Given that $u_{1}=\frac{3}{2}$, let the common difference of the arithmetic series be d and the |
| :--- | :--- | common ratio of the geometric series be r.

and $\frac{3}{2}+\frac{3}{2} r+\frac{3}{2} r^{2}=\frac{21}{2}$
$r^{2}+r-6=0$
$(r+3)(r-2)=0$
$\therefore r=2$, since r is non negative.
$\frac{3}{2}+3 d=\frac{3}{2} r^{3}$
Substitute $r=2$ into (2), $d=\frac{7}{2}$.
Sum of first 10 odd numbered terms of AP
$S=\frac{10}{2}\left[2\left(\frac{3}{2}\right)+9(7)\right]=330$

[5]	$S_{4}=\frac{a\left(r^{4}-1\right)}{r-1}--\cdots---(1)$ $S_{8}=\frac{a\left(r^{8}-1\right)}{r-1}$ $\frac{(2)}{(1)} \Rightarrow \frac{r^{8}-1}{r^{4}-1}=\frac{17}{16}$ $\frac{\left(r^{4}-1\right)\left(r^{4}+1\right)}{r^{4}-1}=\frac{17}{16}$ $\therefore r^{4}=\frac{1}{16} \Rightarrow r_{1}=\frac{1}{2}, r_{2}=-\frac{1}{2}$ When $r_{1}=\frac{1}{2}, S_{1}=\frac{a}{1-\frac{1}{2}}=2 a$
	When $r_{2}=-\frac{1}{2}, S_{2}=\frac{b}{1+\frac{1}{2}}=\frac{2}{3} b$ Ratio is $a: \frac{1}{3} b$ or $3 a: b$

$\begin{aligned} & \text { 3(i) } \\ & {[4]} \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{g}}=(-\infty, 3) \\ & \mathrm{D}_{\mathrm{f}}=(0, \infty) \end{aligned}$ Since $\mathrm{R}_{\mathrm{g}} \not \subset \mathrm{D}_{\mathrm{f}}$, fg does not exist. $\begin{aligned} & \mathrm{R}_{\mathrm{f}}=(1,4) \\ & \mathrm{D}_{\mathrm{g}}=(-\infty, 4) \end{aligned}$ Since $\mathrm{R}_{\mathrm{f}} \subseteq \mathrm{D}_{\mathrm{g}}$, gf exists. $\begin{aligned} \mathrm{R}_{\mathrm{gf}} & =[\mathrm{g}(2), \mathrm{g}(4)) \\ & =[-1,3) \end{aligned}$
$\begin{aligned} & \text { (ii) } \\ & {[4]} \end{aligned}$	Largest possible value of c is 1 . For $x<1,\|x-1\|=1-x$ $\begin{aligned} & \mathrm{g}(x)=(1-x)(x-3) \\ & \begin{aligned} (1-x)(x-3) & =y \\ 1-(x-2)^{2} & =y \\ x & =2-\sqrt{1-y} \quad \because x<1 \\ \mathrm{~g}^{-1}(x) & =2-\sqrt{1-x}, x \in \mathbb{R}, x<0 . \end{aligned} \end{aligned}$

4 2$]$	
y	$=\mathrm{e}^{\tan ^{-1}\left(\frac{x}{2}\right)}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}$	$=\mathrm{e}^{\tan ^{-1}\left(\frac{x}{2}\right)} \frac{1}{1+\left(\frac{x}{2}\right)^{2}} \times \frac{1}{2}$
	$=\frac{2 \mathrm{e}^{\tan ^{-1}\left(\frac{x}{2}\right)}}{4+x^{2}}$
$\left(4+x^{2}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}$	$=2 \mathrm{e}^{\tan ^{-1}\left(\frac{x}{2}\right)}$
$\left(4+x^{2}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}$	$=2 y \quad$ (Shown)

4 (i) [5]	$\begin{align*} & \left(4+x^{2}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=2 y \\ & \left(4+x^{2}\right) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}=2 \frac{\mathrm{~d} y}{\mathrm{~d} x} \tag{2}\\ & \left(4+x^{2}\right) \frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}+2 x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+2 x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} x}=2 \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}} \\ & \left(4+x^{2}\right) \frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}+4 x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} x}=2 \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}} \tag{3} \end{align*}$ When $x=0, y=1$. From equations (1), (2), (3) we get $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2}, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=\frac{1}{4}, \frac{\mathrm{~d}^{3} y}{\mathrm{~d} x^{3}}=-\frac{1}{8}$ By Maclaurin's Theorem, $\begin{aligned} \mathrm{e}^{\tan ^{-1}\left(\frac{x}{2}\right)} & =1+\frac{1}{2} x+\frac{1}{4}\left(\frac{x^{2}}{2!}\right)-\frac{1}{8}\left(\frac{x^{3}}{3!}\right) \\ & =1+\frac{1}{2} x+\frac{1}{8} x^{2}-\frac{1}{48} x^{3}+\ldots \end{aligned}$
$\begin{array}{\|l} \hline \text { (ii) } \\ {[3]} \end{array}$	$\begin{aligned} \mathrm{e}^{\tan ^{-1}\left(\frac{x}{2}\right)} & =1+\frac{1}{2} x+\frac{1}{8} x^{2}-\frac{1}{48} x^{3}+\ldots \\ \frac{\mathrm{e}^{\tan ^{-1}\left(\frac{x}{2}\right)}}{(1+x)^{2}} & =\left(1+\frac{1}{2} x+\frac{1}{8} x^{2}-\ldots\right)(1+x)^{-2} \\ & =\left(1+\frac{1}{2} x+\frac{1}{8} x^{2}-\ldots\right)\left(1-2 x+3 x^{2}-\ldots\right) \\ & =1+\left(\frac{1}{2}-2\right) x+\left(\frac{1}{8}-1+3\right) x^{2}+\ldots \\ \frac{\mathrm{e}^{\tan ^{-1}\left(\frac{x}{2}\right)}}{(1+x)^{2}} & =1-\frac{3}{2} x+\frac{17}{8} x^{2}+\ldots \end{aligned}$

$\begin{aligned} & \hline \mathbf{5 (i)} \\ & {[2]} \end{aligned}$	$\overrightarrow{O C}=\frac{2}{3} \mathbf{a}, \overrightarrow{O D}=3 \mathbf{b}$
$\begin{aligned} & \text { (ii) } \\ & {[4]} \end{aligned}$	$\begin{aligned} & E \text { on } B C: \overrightarrow{O E}=\lambda \overrightarrow{O B}+(1-\lambda) \overrightarrow{O C} \\ & E \text { on } A D: \overrightarrow{O E}=\mu \overrightarrow{O A}+(1-\mu) \overrightarrow{O D} \\ & \overrightarrow{O E}=\lambda \mathbf{b}+(1-\lambda) \cdot \frac{2}{3} \mathbf{a}=\mu \mathbf{a}+(1-\mu) \cdot 3 \mathbf{b} \\ & \quad \lambda=3-3 \mu \quad \cdots(1) \\ & \quad 2-2 \lambda=3 \mu \quad \cdots(2) \\ & \begin{array}{l} (1)+(2): \quad 2-\lambda=3 \Rightarrow \lambda=-1 \end{array} \\ & \overrightarrow{O E}=\frac{4}{3} \mathbf{a}-\mathbf{b} \end{aligned}$
$\begin{aligned} & \text { (iii) } \\ & {[3]} \end{aligned}$	Area of $C D E$ is $\begin{aligned} \frac{1}{2}\|\overrightarrow{D C} \times \overrightarrow{C E}\| & =\frac{1}{2}\left\|\left(\frac{2}{3} \mathbf{a}-3 \mathbf{b}\right) \times\left(\frac{2}{3} \mathbf{a}-\mathbf{b}\right)\right\| \\ & =\frac{1}{2}\left\|-\frac{2}{3} \mathbf{a} \times \mathbf{b}+\frac{2}{3} \mathbf{a} \times 3 \mathbf{b}\right\| \quad \text { since } \mathbf{a} \times \mathbf{a}=\mathbf{b} \times \mathbf{b}=\mathbf{0} \\ & =\frac{1}{2}\left\|\frac{4}{3} \mathbf{a} \times \mathbf{b}\right\|=\frac{2}{3}\|\mathbf{a} \times \mathbf{b}\| \end{aligned}$
(iv) [3]	$\overrightarrow{O E}=\frac{4}{3} \mathbf{a}-\mathbf{b}$ is the diagonal of the rhombus with sides $\frac{4}{3} \mathbf{a}$ and $-\mathbf{b}$. So $\left\|\frac{4}{3} \mathbf{a}\right\|=\|-\mathbf{b}\| \Rightarrow \frac{\|\mathbf{a}\|}{\|\mathbf{b}\|}=\frac{3}{4}$, i.e. $O A: O B=3: 4$ Alternatively, $\begin{aligned} \cos \angle A O E & =\cos \angle F O E \\ \frac{\mathbf{a} \cdot\left(\frac{4}{3} \mathbf{a}-\mathbf{b}\right)}{\|\mathbf{a}\| \times O E} & =\frac{-\mathbf{b} \cdot\left(\frac{4}{3} \mathbf{a}-\mathbf{b}\right)}{\|\mathbf{b}\| \times O E} \\ \frac{4}{3}\|\mathbf{a}\|^{2}-\|\mathbf{a}\|\|\mathbf{b}\| \cos \theta & \|\mathbf{a}\| \end{aligned}=\frac{-\frac{4}{3}\|\mathbf{a}\|\|\mathbf{b}\| \cos \theta+\|\mathbf{b}\|^{2}}{\|\mathbf{b}\|} .$

Section B: Probability and Statistics [60 marks]

$\begin{aligned} & \mathbf{6 (i)} \\ & {[2]} \end{aligned}$	$\begin{aligned} \mathrm{P}\left(X \mid Y^{\prime}\right) & =\frac{\mathrm{P}\left(X \cap Y^{\prime}\right)}{\mathrm{P}\left(Y^{\prime}\right)} \\ \mathrm{P}\left(Y^{\prime}\right) & =\frac{\mathrm{P}\left(X \cap Y^{\prime}\right)}{\mathrm{P}\left(X \mid Y^{\prime}\right)} \\ & =\frac{(1 / 2)}{(50 / 63)} \\ & =\frac{63}{100} \end{aligned}$
$\begin{aligned} & \text { (ii) } \\ & {[2]} \end{aligned}$	$\begin{aligned} \mathrm{P}\left(X \cup Y^{\prime}\right) & =\mathrm{P}(X)+\mathrm{P}\left(Y^{\prime}\right)-\mathrm{P}\left(X \cap Y^{\prime}\right) \\ \mathrm{P}(X) & =\mathrm{P}\left(X \cup Y^{\prime}\right)+\mathrm{P}\left(X \cap Y^{\prime}\right)-\mathrm{P}\left(Y^{\prime}\right) \\ & =\frac{3}{4}+\frac{1}{2}-\frac{63}{100} \\ \mathrm{P}(X) & =\frac{31}{50} \end{aligned}$
$\begin{aligned} & \text { (iii) } \\ & {[3]} \end{aligned}$	$\begin{aligned} \mathrm{P}(X) & =\mathrm{P}(X \cap Y)+\mathrm{P}\left(X \cap Y^{\prime}\right) \\ \mathrm{P}(X \cap Y) & =\mathrm{P}(X)-\mathrm{P}\left(X \cap Y^{\prime}\right) \\ & =\frac{31}{50}-\frac{1}{2} \\ & =\frac{3}{25} \end{aligned}$ Since $\mathrm{P}(X \cap Y)=\frac{3}{25} \neq \frac{31}{50} \times \frac{37}{100}=\mathrm{P}(X) \times \mathrm{P}(Y), X$ and Y are not independent events OR Since $\mathrm{P}(X)=\frac{31}{50} \neq \frac{50}{63}=\mathrm{P}\left(X \mid Y^{\prime}\right), X$ and Y^{\prime} are not independent events So X and Y are not independent events

$\begin{aligned} & \hline 7(i) \\ & {[5]} \end{aligned}$	Let X be the mass of a bag of sugar in kg. The necessary assumption is X follows a normal distribution.
	$\left.\begin{array}{ll}\mathrm{H}_{0}: \quad \mu=1 \\ \mathrm{H}_{1}: \quad \mu>1\end{array} \quad \begin{array}{l}\text { Assumption that } X \text { follows a normal } \\ \text { distribution is required as question did }\end{array}\right\}$not state the distribution of X and $n=8$ is too small to use Central Limit Theorem.
	$\bar{x}=\frac{8.4}{8}=1.05$ Test Statistic: $Z=\frac{\bar{X}-1}{0.08 / \sqrt{8}}$ Level of significance: 5\% Reject H_{0} if p-value <0.05 Using GC, p-value $=0.0385<0.05$ Since p-value $=0.0385<0.05$, we reject H_{0} and conclude there is sufficient evidence, at the 5% significance level, to support the manufacturer's concern.
$\begin{aligned} & \text { (ii) } \\ & {[3]} \end{aligned}$	$\begin{aligned} & \text { Under } \mathrm{H}_{0}, \bar{X} \sim \mathrm{~N}\left(1, \frac{\sigma^{2}}{8}\right) \\ & \mathrm{H}_{0} \text { not rejected } \Rightarrow p \text {-value }>0.05 \\ & \mathrm{P}(\bar{X}>1.05) \end{aligned}>0.05 \mathrm{x}\left(\begin{array}{rl} \mathrm{P}\left(\begin{array}{rl} \frac{1.05-1}{\sqrt{\frac{\sigma^{2}}{8}}} \end{array}\right) & >0.05 \\ 0.05 \sqrt{\frac{8}{\sigma^{2}}} & <1.64485 \\ \sigma^{2} & >8\left(\frac{0.05}{1.64485}\right)^{2} \\ \sigma^{2} & >0.007392 \end{array}\right.$

8 (i) [3]	Let X and Y be the masses in grams of a randomly chosen apple and a randomly chosen potato in grams respectively. i.e. $X \sim \mathrm{~N}\left(90,13^{2}\right), Y \sim \mathrm{~N}\left(170,30^{2}\right)$. $\begin{aligned} & \mathrm{E}(Y-2 X)=170-2(90)=-10 \\ & \operatorname{Var}(Y-2 X)=30^{2}+2^{2}\left(13^{2}\right)=1576 \end{aligned}$ $Y-2 X \sim \mathrm{~N}(-10,1576)$ $\begin{aligned} \text { Required probability } & =\mathrm{P}(Y>2 X) \\ & =\mathrm{P}(Y-2 X>0) \\ & =0.401 \quad(3 \text { s.f. }) \end{aligned}$
$\begin{array}{\|l\|} \hline \text { (ii) } \\ {[3]} \end{array}$	$\begin{aligned} & \text { Let } T=X_{1}+X_{2}+\ldots+X_{5}+Y_{1}+Y_{2}+\ldots+Y_{6} . \\ & \mathrm{E}(T)=5(90)+6(170)=1470 \\ & \begin{aligned} & \operatorname{Var}(T)=5\left(13^{2}\right)+6\left(30^{2}\right)=6245 \\ & T \sim \mathrm{~N}(1470,6245) \\ & \text { Required probability }=\mathrm{P}(1200<T<1500) \\ &=0.648 \quad(3 \text { s.f. }) \end{aligned} \end{aligned}$
$\begin{array}{\|l} \hline \text { (iii) } \\ {[3]} \end{array}$	$\begin{aligned} & \text { Let } W=0.85\left(X_{1}+X_{2}+\ldots+X_{5}\right)+0.75\left(Y_{1}+Y_{2}+\ldots+Y_{6}\right) \\ & \mathrm{E}(W)=(0.85)(5)(90)+(0.75)(6)(170)=1147.5 \\ & \begin{aligned} & \operatorname{Var}(W)=\left(0.85^{2}\right)(5)\left(13^{2}\right)+\left(0.75^{2}\right)(6)\left(30^{2}\right)=3648.0125 \\ & W \sim \mathrm{~N}(1147.5,3648.0125) \\ & \text { Required probability }=\mathrm{P}(W \leq 1200) \\ &= 0.808(3 \text { s.f. }) \end{aligned} \end{aligned}$

9 (i) [2]	$\begin{aligned} & \mathrm{P}(k<X<7)=\mathrm{P}(X<7)-\mathrm{P}(X<k)=0.8-0.2=0.6 \text { (shown) } \\ & \mathrm{P}(\mu<X<7)=0.3 \end{aligned}$
$\begin{array}{\|l\|} \hline \text { (ii) } \\ {[1]} \\ \hline \end{array}$	Since $\mathrm{P}(k<X<\mu)=\mathrm{P}(\mu<X<7)=0.3$, by symmetry $\quad \mu=\frac{k+7}{2}$.
$\begin{aligned} & \text { (iii) } \\ & {[2]} \end{aligned}$	$\mathrm{P}(X<7)=0.8 \Rightarrow \mathrm{P}\left(Z<\frac{7-\mu}{\sqrt{12}}\right)=0.8$ Therefore $\frac{7-\mu}{\sqrt{12}}=0.8416$ (4 d.p) $\frac{7-\mu}{\sqrt{12}}=0.8416 \Rightarrow \mu=4.0845$
(iv) [3]	$\begin{aligned} & k=2 \mu-7=1.169 \\ & \mathrm{P}(\|X\|<k)=0.135(3 \text { s.f) } \end{aligned}$
$\begin{aligned} & \hline(\mathbf{v}) \\ & {[4]} \end{aligned}$	$\begin{aligned} & 2 \mathrm{P}(X<r)=3 \mathrm{P}(X>r) \\ & \Rightarrow \mathrm{P}(X>r)=0.4 \end{aligned}$ Let Y be the number of observations out of 10 with values greater than r. $Y \sim \mathrm{~B}(10,0.4)$ $\mathrm{P}(Y \geq 6)=1-\mathrm{P}(Y \leq 5)=0.166(3 \mathrm{~s} . \mathrm{f})$

$\begin{aligned} & \text { 10(i) } \\ & {[1]} \end{aligned}$	number of committees if there is no restrictions in the selection $={ }^{13} C_{7}=1716$
$\begin{aligned} & \text { (i) } \\ & {[2]} \end{aligned}$	There are 3 cases: Case 1: 4 women 3 men Number of committees $={ }^{6} C_{4} \times{ }^{7} C_{3}=525$ Case 2: 5 women 2 men Number of committees $={ }^{6} C_{5} \times{ }^{7} C_{2}=126$ Case 3: 6 women 1 man Number of committees $={ }^{6} C_{6} \times{ }^{7} C_{1}=7$ Total number of committees $=658$ (Shown)
$\begin{aligned} & \text { (iii) } \\ & {[1]} \end{aligned}$	$\mathrm{P}($ the committee will consist of 4 single women and 3 single men) $=\frac{{ }^{5} C_{4} \times{ }^{6} C_{3}}{658}=\frac{100}{658}=\frac{50}{329}$
(iv) [2]	Number of committees with no married member $\begin{aligned} & ={ }^{5} C_{4} \times{ }^{6} C_{3}+{ }^{5} C_{5} \times{ }^{6} C_{2} \\ & =100+15 \\ & =115 \end{aligned}$

	Number of committees with at least one married member $=658-115$ $=543$
P(the committee will contain at least one married member) $=\frac{543}{658}$ Alternative Solution We consider 3 cases: Case $1:$ Husband in, wife out Number of committees $={ }^{5} C_{4} \times{ }^{6} C_{2}+{ }^{5} C_{5} \times{ }^{6} C_{1}=75+6=81$ Case $2:$ Wife in, husband out Number of committees $={ }^{5} C_{3} \times{ }^{6} C_{3}+{ }^{5} C_{4} \times{ }^{6} C_{2}+{ }^{5} C_{5} \times{ }^{6} C_{1}=200+75+6=281$ Case $3:$ Both husband and wife are in Number of committees $={ }^{5} C_{3} \times{ }^{6} C_{2}+{ }^{5} C_{4} \times{ }^{6} C_{1}+{ }^{5} C_{5}=150+30+1=181$ Total number of such committees $=543$ P(the committee will contain at least one married member) $=\frac{543}{658}$	
(v)	Number of ways to sit 4 women around the table $=3!$ Number of ways to slot the 3 men $=4 \times 3 \times 2=24$ Number of sitting arrangements where the all the men are separated $=3!\times 24$
Required probability	
$=\frac{144}{6!}$	
$=\frac{1}{5}$	

